
Towards a Collective Layer in the Big Data Stack

Thilina Gunarathne
Department of Computer Science
Indiana University, Bloomington

tgunarat@indiana.edu

Judy Qiu
Department of Computer Science
Indiana University, Bloomington

xqiu@indiana.edu

Dennis Gannon
Microsoft Research,

Redmond,WA
dennis.gannon@microsoft.com

Abstract—We generalize MapReduce, Iterative MapReduce
and data intensive MPI runtime as a layered Map-Collective
architecture with Map-AllGather, Map-AllReduce, MapRe-
duceMergeBroadcast and Map-ReduceScatter patterns as the
initial focus. Map-collectives improve the performance and
efficiency of the computations while at the same time facilitat-
ing ease of use for the users. These collective primitives can be
applied to multiple runtimes and we propose building high
performance robust implementations that cross cluster and
cloud systems. Here we present results for two collectives
shared between Hadoop (where we term our extension H-
Collectives) on clusters and the Twister4Azure Iterative
MapReduce for the Azure Cloud. Our prototype implementa-
tions of Map-AllGather and Map-AllReduce primitives
achieved up to 33% performance improvement for K-means
Clustering and up to 50% improvement for Multi-Dimensional
Scaling, while also improving the user friendliness. In some
cases, use of Map-collectives virtually eliminated almost all the
overheads of the computations.

Keywords: MapReduce, Twister, Collectives, Cloud, HPC,
Performance, K-means, MDS

I. INTRODUCTION

During the last decade three largely industry-driven dis-
ruptive trends have altered the landscape of scalable parallel
computing, which has long been dominated by HPC applica-
tions. These disruptions are the emergence of data intensive
computing (aka big data), commodity cluster-based execution
& storage frameworks such as MapReduce, and the utility
computing model introduced by Cloud computing. Often-
times MapReduce is used to process the “Big Data” in cloud
or cluster environments. Although these disruptions have
advanced remarkably, we argue that we can further benefit
these technologies by generalizing MapReduce and integrat-
ing it with HPC technologies. This splits MapReduce into a
Map and a Collective communication phase that generalizes
the Reduce concept. We present a set of Map-Collective
communication primitives that improve the efficiency and
usability of large-scale parallel data intensive computations.

When performing distributed computations, data often
needs to be shared and/or consolidated among the different
nodes of the computations. Collective communication primi-
tives effectively facilitate these data communications by
providing operations that involve a group of nodes simulta-
neously [1, 2]. Collective communication primitives are very
popular in the HPC community and used heavily in the MPI
type of HPC applications. There has been much research [1]
to optimize the performance of these collective communica-
tion operations, as they have a significant impact on the per-
formance of HPC applications.

Our work highlights several Map-Collective communica-
tion primitives to support and optimize common computation
and communication patterns in both MapReduce and iterative
MapReduce computations. We present the applicability of
Map-Collective operations to enhance (Iterative) MapReduce
without sacrificing desirable MapReduce properties such as
fault tolerance, scalability, familiar APIs and data model. The
addition of Map-Collectives enriches the MapReduce model
by providing many performance and ease of use advantages.
These include providing efficient data communication opera-
tions optimized for particular execution environments & use
cases, enabling programming models that fit naturally with
application patterns and allowing users to avoid overhead by
skipping unnecessary steps of the execution flow. Map-
Collective operations substitute multiple successive steps of
an iterative MapReduce computation with a single powerful
collective communication operation.

We present these patterns as high level constructs that can
be adopted by any MapReduce or iterative MapReduce
runtime. We also offer proof-of-concept implementations of
the primitives on Hadoop and Twister4Azure and envision a
future where all the MapReduce and iterative MapReduce
runtimes support a common set of Map-Collective primitives.

This paper focuses on mapping the All-to-All communi-
cation type of collective operations, namely AllGather and
AllReduce, to the MapReduce model as Map-AllGather and
Map-AllReduce patterns. Map-AllGather gathers the outputs
from all the Map tasks and distributes the gathered data to all
the workers after a combine operation. Map-AllReduce prim-
itive combines the results of the Map Tasks based on a reduc-
tion operation and delivers the result to all the workers. We
also present MapReduceMergeBroadcast as an important
collective in all (iterative) MapReduce frameworks.

II. MAPREDUCE-MERGEBROADCAST (MR-MB)
We introduce MapReduce-MergeBroadcast [1] abstrac-

tion, called MR-MB from here onwards, as a generic abstrac-
tion to represent data-intensive iterative MapReduce applica-
tions. Programming models of most of the current iterative
MapReduce frameworks can be specified as MR-MB.

A. API
The MR-MB programming model extends the map and

reduce functions of traditional MapReduce to include the
loop variant data values as an input parameter. MR-MB pro-
vides the loop variant data (dynamicData), including broad-
cast data, to the Map and Reduce tasks as a list of key-value
pairs using this additional input parameter.
 Map(<key>, <value>, list_of <key,value> dynamicData)
 Reduce(<key>,list_of<value>,list_of<key,value> dynamicData)

236

B

p
s
th
a
T
a
g

b
m
ti
 M

M

C

a
c
s
ty
ta
th
M
B
th
(
�
e
f
tr
b
e

D

i
s
c
b
B
la
d
it
e
th
a

M
M
M

M

M

B. Merge Task
Merge [2] w

programming m
single task, or
he Reduce step

aggregation of
The Merge step
ates the loops
gramming mod

Merge Task
broadcast data
merge, the over
ion and data flo
Map Combine

Following i
Merge(list_of <k

C. Broadcast
The broadca

all the tasks in
computations,
smaller than t
ypically broad
asks of the ne
hought of as

MapReduce co
Broadcast-Map
he MapReduce

(e.g., …MRn�
�...). Broadcas
environment as
for data broad
ree (MST), pip

broadcast data
executing on th

D. Current iter
Twister4Az

s a MapReduc
similar to the M
computations b
beginning of e
Broadcast-Map
ar to MR-MB

duce computati
teration, effect

equivalent to t
hrough a Map

and loop invaria

Pattern
MapReduce
MapReduce-
MergeBroadcas

Map-AllGather

Map-AllReduce

k
was defined as
model to suppo

the convergen
p that can be us

the results of
p can also serv

condition in
del.
k receives all
for the curren

rall flow of the
ow would appe
e Shuffle Sort
s the programm

key,list_of<value
list

ast operation tr
an iteration. In
the loop-varian
the loop-invari
casts the outpu
ext iteration. F
executing at

omputation. T
pReduce-Merge
e-Merge-Broad
� Mergen� Br

st can be imple
s well as the da
dcasting includ
peline and cha
between mult

he same node.

rative MapRed
ure[2] support
e-Combine mo

Merge step of M
broadcast the lo
each iteration,
pReduce-Comb
. HaLoop [5] p
ion to do the
tively making
the Merge tas

pReduce compu
ant data.

Executio
Map�Comb

t
Map�Comb
�Merge�B
Map�AllGa
tion�AllGa

 Map�AllRe
putation)

s a new step to
ort iterative ap
nce point, whi
sed to perform
f a single Map
ve as the “loop

the iterative

l the Reduce
nt iteration as
e iterative Map
ear as follows:
t Reduce Me
ming API of the
>> reduceOutpu
t_of <key,value>

ransmits the lo
n typical data-i
nt data is orde
iant data. Bro
ut data of the M
For MR-MB,
the beginning

This would m
e, which is esse
dcast when iter
roadcastn� M
emented efficie
ta sizes. Well-k

de flat-tree, mi
aining[3]. It’s
tiple Map and

duce Framewor
ts MR-MB nat
odel, where the

MR-MB. Twiste
oop variant dat

effectively m
bine, which is s
performs an ad
fixed point ev

this MapRed
sk. Data broad
utation to join

on and commun
bine�Shuffle�
bine�Shuffle�
Broadcast
ather

ather Combine
educe (commun

o the MapRedu
pplications. It i
ch executes af
summarization

pReduce iterati
p-test” that eva
MapReduce p

outputs and
the inputs. W

Reduce compu

rge Broadcast
e Merge task.
uts,
> dynamicData)

op variant data
intensive iterat
ers of magnitu
oadcast operat
Merge tasks to

this can also
g of the iterat
make the mo
entially similar
rations are pres

MRn+1� Merge
ently based on
known algorith
inimum spann
possible to sh

d/or Reduce ta

rks and MR-MB
ively. Twister
e Combine step
er [4] MapRedu
ta products at

making the mo
semantically sim
dditional MapR

valuation for ea
duce computat
dcast is achiev
n the loop vari

nication flow
Sort�Reduce
Sort�Reduce

Communica-

ication & com-

uce
is a
fter
n or
ion.
alu-
pro-

the
With
uta-

a to
tive
ude
tion
the
be

tive
odel
r to
sent

n+1
the

hms
ning
hare
asks

MB
[4]

p is
uce
the

odel
mi-
Re-
ach
tion
ved
iant

III.

Whi
using th
mon exe
Some o
Merge t
implem
patterns
order to
primitiv
inspired

The
terns th
tions by
tion. As
can be
framew
tions lea

This
Map-Al
MB as a

A. Req
Map

duce da
which s
tion var
should
model
should m
lent fau

B. Adv
1) P

Intro
types of
duce ap
the com

Framewo
Hadoop, Twist

Twister, HaLo

- H-Collectives,

- H-Collectives,

COLLECTIVE
ITE

ile implement
he MR-MB mo
ecution flow p
of these appli
tasks while ot

ment using the M
s being slightly
o solve such

ves to the itera
d by the MPI co

Figure 1

se primitives s
hat occur freque
y substituting
s depicted in Fi
thought of as

work-defined co
ading to the ne
s paper propo
llGather and M
another collect

uirements
p-Collective ar
ata model and
support multip
riations and inh
retain scalabi
simple and e
maintain the sa

ult tolerance sup

vantages
Performance im
oduction of M
f performance
pplications. M
mputations by

orks
ter, Twister4Azu

oop, Twister4Azu

, Twister4Azure

, Twister4Azure

E COMMUNICA
ERATIVE MAPR
ting iterative M
odel, we starte

patterns across t
ications had v
ther application
MR-MB mode
y different than

issues, we in
ative MapRedu
ollective comm

1. Map-Collectiv

upport higher-
ently in data-in
certain steps o
igure 1, these M

a Map phase
ommunication
ext iteration.
oses two Ma
Map-AllReduc
tive communica

rchitecture sho
the MapRedu

ple Map task w
homogeneous t
ility while ke
easy to under
ame type of fra
pported by Map

mprovement
Map-Collective

improvements
ap-Collectives
skipping or o

Sample a
ure WordCou

ure K-meansC

MDS-BC
PageRank
K-meansC
StressCal

ATIONS PRIMITI
REDUCE

MapReduce a
ed to notice se
the different ap
very trivial R
ns needed extr
el owing to the
n the MR-MB
ntroduce Map
uce programm

munications prim

ve primitives

level communi
ntensive iterativ
of the MR-MB
Map-Collective
 followed by
and computat

ap-Collective
e. We can cla
ation primitive

ould fit with th
uce computatio
waves, signific
tasks. Also the

eeping the pro
rstand. These
amework-mana
pReduce.

e primitives p
s to the iterativ

reduce the ov
overlapping ce

applications
unt, Grep, etc.

Clustering, Page

CCalc (matrix X
k (matrix X vect
Clustering,
lc

VES FOR

applications
everal com-
pplications.

Reduce and
ra effort to
e execution
pattern. In
-Collective

ming model,
mitives[6].

ication pat-
ve applica-

B computa-
e primitives
a series of
tion opera-

primitives:
assify MR-
e as well.

he MapRe-
onal model,
cant execu-
e primitives
ogramming

primitives
aged excel-

provides 3
ve MapRe-
verhead of

ertain steps

eRank,

X matrix),
or)

MDS-

237

(
c
n
h

c
ti
M
f
b
tu
d

ti
lo
a
a
d
th
r

th
c

f
f
d
p
R
s

a
p
th
d
u
o

s
w
to

C

c
g
w
f
f
p
m
R
v
o

D

d

(e.g. shuffle, r
computational
naturally with
heads of unnece

Map-Collec
ceive the data a
ion of Map-C

Map results are
fects of task he
barriers of mul
ually helps in

data transfers an
Another adv

imize these op
owing the po

algorithm) for
ample, a comm
data sizes may
he Map-Collec

rithm implemen
Map-Collec

he computatio
chical reduction

2) Ease of u
Map-Collec

fit more natura
fies the porting
duce model. In
plement, test an
Reduce and M
side hacks to br

3) Scheduli
In addition

ations, Map-Co
propagate the s
he worker nod

data. This allow
ule the tasks of
overhead.

For exampl
successfully em
with minimal o
o perform spec

C. Programmi
Map-Collec

configuration o
gramming mod
with Map-Col
frameworks tha
for developers
programming t
means Clusteri
Reduce and Me
vice versa with
or Merge functi

D. Implementa
Map-Collec

duce framewor

reduce, merge
flow. Map-Co
the applicatio

essary trivial st
ctives enable th
across iteration
ollectives can
e produced. Th
eterogeneity by
ltiple processin

this case by
nd overlaps com
vantage is the a
perations transp
ossibility of
different use c
munication alg
not be the bes

ctive operation
ntations to be u
ctives also mak
ons in the data
n in Map-AllRe
use
ctive operations
ally with real w
g of new appli
n addition, the
nd optimize ce

Merge tasks, and
roadcast the da
ing with iterati
to providing sy

ollective primit
scheduling info
des along with
ws the framew
f a new iterati

le, as mentione
mploys this stra
overhead, while
culative schedu

ing model
ctive primitives
option without
del. This perm
llectives to b
at don’t suppor

who are alre
to use Map-C
ing MapRedu
erge tasks can b
hout making an
ion implementa

ation considera
ctives can be ad
rks. The simple

e) of the itera
ollective patter
on patterns, av
teps.
he applications
ns much faster,

be started as
his helps to mi
y not having t
ng steps. Task
reducing the c
mmunication w
ability of the fr
parently for th
different opti

cases and envir
gorithm that’s
st for larger on
s can opt to ha

used for differe
ke it possible to
a transfer layer
educe primitive

s present patter
world applicati
cations to the
developers do

ertain steps of
d can avoid M

ata.
ive primitives
ynchronization
tives also give

ormation for the
h the collectiv

works to synchr
on or applicati

ed in section V
ategy to schedu
e H-Collectives
uling of tasks.

s can be specif
changing the

mits the applic
be backward
rt them. This a
eady familiar w
Collectives. Fo
uce implement
be used with M
ny changes to
ations.

ations
dd-on improve
est implementa

ative MapRedu
rns also fit m
voiding the ov

s to send and
, since the exe
soon as the f

itigate the bad
to wait for glo
heterogeneity
congestion of
with computatio
frameworks to o
he users, even
mizations (po
ronments. For

best for smal
nes. In such cas
ave multiple alg
nt data sizes.

o perform some
r, like the hier
e.

rns and APIs t
ions. This simp
iterative MapR

o not have to i
MR-MB, such

MapReduce dri

n between the it
e us the ability
e next iteration
e communicat
ronize and sch
ion with minim

VI, Twister4Az
ule new iteratio
s use this strate

fied as an outs
MapReduce p

cations develop
compatible w

also makes it ea
with MapRedu
r example, a
ation with M

Map-AllReduce
the Map, Redu

ements to MapR
ation would be

uce
more
ver-

re-
cu-

first
ef-

obal
ac-
the
on.
op-
al-

oly-
ex-
ller
ses,
go-

e of
rar-

that
pli-
Re-
im-

h as
ver

ter-
y to
n to
tion
hed-
mal

zure
ons
egy

side
pro-
ped

with
asy
uce
K-

Map,
e or
uce

Re-
e to

implem
tation m
MapRed
by prov
es the ap

Mor
tives as
library)
on envi
municat

Map
level fa
execute
the iter
checkpo
tively fi

AllG
tion tha
gathered
noticed
where t
that sim
order, fo
the asse
be a ma
puts pa
would u
together

Data
Gather
matrix m
trix (ma

A. Mod
We

primitiv
nication
manner.

1) E

Map
puts to
the com
recipien
will del
once the

ment the Map-C
models as a
duce APIs. Th

viding a unified
pplication patte
re optimized im
s part of the M

with the abili
ironment and u
tion algorithms
p-Collectives c
fault tolerance
es the iteration i
ration results
ointed. This is
iner grained.

IV. MA

Gather is an all
at gathers data
d data right bac
in data-intens

the “reduce” s
mply aligns the
followed by “m
embled output
atrix-vector mu
art of the resu
use the Reduce
r and then broa
a-intensive ite
pattern includ
multiplication)

atrix-vector mu

del
developed a

ve similar to th
n primitive to s
r.
Execution mod

Figure 2

p-AllGather pr
all computatio

mputation, and
nt nodes as de
liver its result t
e Map task is c

Collectives com
user level lib

his will achieve
d programming
erns.

mplementations
MapReduce fram

ity to optimize
use case, usin
s in the backgro

can support iter
e. Iteration le
in case of any f
(smaller loop
preferred whe

AP-ALLGATHER

l-to-all collectiv
from all the w
ck to them [7].
sive iterative
step is a simp
e outputs of th

merge” and bro
to all the wor

ultiplication, w
ultant vector.

e and Merge tas
adcast the assem
erative applicat
de Multi-Dime
) [8] and Page
ultiplication).

Map-AllGath
he MPI AllGath
support applica

del

2. Map-AllGathe

rimitive broadc
onal nodes (all-
d then assembl
epicted in Figu
to all other wo

completed.

mmunication a
brary using t

e ease of use fo
g model that be

s can present th
mework (or as
e the data trans
ng optimized g
ound.
ration level as w
evel fault tol
failures. In this

p variable data
en the iteration

R COLLECTIVE

ve communica
workers and dist

. AllGather pat
MapReduce a

ple aggregation
he Map Tasks
adcast steps th
rkers. An exam

where each Ma
In this compu

sks to assemble
mbled vector to
tions that hav

ensional Scalin
eRank using in

her iterative M
her [7] collectiv
ations in a mo

er Collective

casts the Map
-to-all commun
les them toget
ure 2. Each M
orkers of the co

and compu-
the current
or the users
etter match-

hese primi-
 a separate
sfers based

group com-

well as task
erance re-
s case, only
a) will be
ns are rela-

ation opera-
tributes the
ttern can be
applications
n operation
together in

hat transmit
mple would
ap task out-
utation we
e the vector
o workers.
ve the All-
ng (matrix-
n-links ma-

MapReduce
ve commu-
re efficient

p Task out-
nication) of
ther in the

Map worker
omputation

238

lo
A
p
s
b
s

te
a
s
v
o
k
th
u

im
b
a
f
th
w

c
ia
b
w
v
p
u

w
th
p
A

a
e
in
th
n

c
v
n

B

e
b
p
d
p

M

The flow of
owed by AllGa

AllGather comb
put processing
sort, reduce, w
broadcast, and
single powerful

2) Data Mo
For Map-Al

eger specifying
ant gathered da
sets of vectors
value of the M
of Map output
keys. The resu
he Map tasks

using the APIs
The final as

mplementing a
biner. A custom
assembling fun
function is a li
he key. This

worker node aft
The default

cases, as the co
al process. The

be in <int, dou
would represen
value would co
puts with dupli
ues) are not sup

Users can u
with the Map-A
he collective o

phases of Map
AllGather comm

3) Cost Mo
Using an op

a bi-directional
estimate the co
ng the Hockne
he transmissio

number of Map

���

It’s possible
cal aggregation
variation of M
network conges

B. Fault tolera
All-Gather p

er nodes can f
breakdowns. W
possible for the
data from the p
perform the All

The fault
MapReduce en

f a Map-AllGat
ather all-to-all
bine. Map-AllG
(collect, spill,

write), Merge t
the barriers ass
l and optimized
odel
llGather, the M
g the location o
ata product. Ma
(partial matrix

Map-AllGather o
t values in the

ult of AllGathe
of the next ite
and mechanism

ssembly of AllG
a custom comb

m combiner allo
nction. In this c
st of Map outp
assembling fu

fter all the data
t combiner sho
mbining of All
e default comb
uble[]> format
nt the row inde
ontain the corre
icate keys (sam
pported and the
utilize their Map
AllGather prim
operation, after
pReduce would
munication and

odel
ptimized imple
l exchange-bas

ost of the AllG
ey model[3, 9],
n time per dat

p tasks and nv is

������	
 � �
��

e to further red
n of Map outpu

Map task compl
stion in these im

ance
partial data tra

fail due to com
When task leve
e workers to re
persistent stora
l-Gather compu
tolerance and
nable possible

ther operation
communicatio
Gather substitu
, merge), Redu
task (shuffle,
sociated with th
d AllGather ope

Map output key
of the output v
ap output value
x) or single val
operation is an
e order of the

er-Combine wi
eration as the
ms suggested in
Gather data can
biner or using
ows the user to
case, the input t
put key-value
unction gets e
is received.
ould work for
lGather data is

biner expects th
. In a matrix e
ex of the outpu
esponding row
me key for mu
erefore ignored
p function imp

mitive. They onl
r which the sh
d get substitut
d computations

mentation of A
sed implement
ather compone
, where � is the
ta item (1/band
s the size of Al

���� �
� � �

�
duce this cost b
ut data in the w
letion times al
mplementation

ansfers from M
mmunication m
l fault toleranc
etrieve any mis
age (e.g. HDFS
utation.

the speculati
duplicate exe

is Map phase f
n followed by
utes the Map o
uce task (shuf
barrier, execut
hese steps, wit
eration.

y should be an
alue in the resu
es can be vecto
lues. Final out

n assembled ar
eir correspond
ill be provided
loop variant d

n Section 2.2.1
n be performed

the default co
o specify a cust
to the assembl
pairs, ordered

executed in ea

most of the u
oftentimes a tr

he Map outputs
example, the k
ut matrix and
vector. Map o

ultiple output v
d.
lementations a
ly need to spec
huffle and redu
ted by the M
s.

AllGather, such
tation[7], we c
ent as follows
e latency and �
dwidth)), m is
lGather data.
�
���

by performing
worker nodes. T
lso help to av

ns.

Map tasks to wo
mishaps and ot
ce is enabled,
ssing Map out
S) to successfu

ive execution
ecution of tas

fol-
the

out-
ffle,
te),
th a

in-
ult-
ors,
tput
rray
ding
d to
data
.

d by
om-
tom
ing
by

ach

use
riv-
s to
key
the

out-
val-

s is
cify
uce
ap-

h as
can
us-

� is
the

lo-
The
oid

ork-
ther
it’s

tput
ully

of
sks.

Map-Al
fore the
handle a

C. Ben
Use

computa
broadca
smaller-
tive orig
able to
lithic br

Ofte
neous[1
tions of
Map tas
pleted.
broadca
cution, r
tion. Th
multiple

In a
also enh
plement
can be
next app

AllR
values e
and ma
pattern
processi
plication
means
computa

A. Mod
We

tive, sim
tion ope
of the M

1) E
The

AllRedu
AllRedu
depicted
shuffle�
with Al

llGather can p
e final assembl
any duplicate e

efits
 of the Map-
ation eliminat

asting steps in
-sized multiple
ginating from m
use the networ
roadcast origin
entimes the Ma
10] in typical M
f Map-AllGath
sk result value
This mechani

asted by the tim
resulting in ov

he benefit will b
e waves of Map
addition to imp
hances usabilit
ting reduce an
used to efficie
plication of the

V. MA

Reduce is a col
emitted by all t
akes the results
can be seen in
ing algorithms
ns that have t
Clustering, M

ation and Page

del
propose Map-

milar to the MP
eration, to effic

Map Tasks.

Figure 3

Execution Mod
 computation
uce computati
uce communic
d in Figure 3.
�sort�reduce
llReduce comm

erform the dup
ly of the data
executions.

-AllGather in
tes the need

n that particula
e broadcasts o
multiple server
rk more effecti
ating from a si
ap task execut

MapReduce co
her primitive c
es as soon as th
sm ensures th
me the last Ma
erlap of compu
be even more s
p tasks.
proving the pe
ty, as it elimin
nd/or merge fu
ently schedule
e computationa

AP-ALLREDUCE

llective pattern
the workers ba
s available to
n many iterativ
s. Example da
the Map-AllRe
Multi-Dimensi
eRank using ou

-AllReduce iter
PI AllReduce [7
ciently aggrega

3. Map-AllReduc

del
and communic

ion is a Map
cation and com
This model al

e�merge�bro
munication in t

plicate data de
at the recipien

an iterative M
for reduce, m

ar computation
of Map-AllGat
rs of the cluste
ively than a sin
ngle server.
tion times are

omputations. Im
can start broad
he first Map ta

hat almost all t
ap task comple
utations with co
significant whe

rformance, thi
nates the overh
functions. Map

the next itera
al flow as well.

E COLLECTIVE

n which combin
ased on a given
all the worker

ve data mining
ata-intensive it
educe pattern
ional-Scaling
ut links matrix.

rative MapRed
7] collective co
ate and reduce

ce collective

cation pattern
phase follow

mputation (red
llows us to sub

oadcast steps o
the communica

etection be-
nt nodes to

MapReduce
merge and
n. Also the
ther primi-

er would be
ngle mono-

inhomoge-
mplementa-
dcasting the
ask is com-
the data is
tes its exe-
ommunica-
en we have

s primitive
head of im-
p-AllGather
ation or the

nes a set of
n operation
rs [7]. This
g and graph
erative ap-
include K-
StressCalc

duce primi-
ommunica-
the results

of a Map-
wed by the
duction), as
bstitute the
of MR-MB
ation layer.

239

T
a
a

lo
ta
o

v
e
r
i
M
M
k
A
p
r
ty

c
a
o
u
(
a
A
s
A
ti

f
T
th
n
a

a
d

lo
th
s
ta

The AllReduce
algorithms such
archical tree-ba

Map-AllRed
ocal aggregatio
asks and to pe

outputs while c
2) Data Mo

Figure 4.

For Map-A
vectors or singl
each distinct M
reduction opera
s a list of key/

Map output key
Map output val
key. As shown
AllReduce outp
put keys. For e
result in 10 co
ype should be

In addition
ciative operatio
ample operation
operations. Ope
using the Sum
(dimension) to
associative and
AllReduce has
soon as the firs
AllReduce imp
ional exchange

It is also po
function that e
This function c
he Map-AllRe

nation conditio
after all the Ma

list<Key, IOp

3) Cost Mo
An optimize

a bi-directional
duce the cost of

�����	
It’s also pos

ocal aggregatio
he cost of AllR

substitutes the
ask and broadc

e phase can be
h as bidirection
ased reduction.
duce allows th
on on the wor

erform hierarch
ommunicating

odel

 Example Map-A

AllReduce, the
le values of nu

Map output key
ation. Output o
/value pairs w
y and the valu
lues that were a
in Figure 4, the

put is equal to
example, 10 d

ombined vector
a number.
to the summat

on can be perfo
ns include sum
erations such a
operation toge
count the num

d commutative
the ability to

st Map task com
lementations to

es to optimize t
ossible to allow
executes after
can be used to
duce result or
n. It would be

ap-AllReduce d
pRedValue> post

list<Key, IOp
odel
ed implementa
l exchange-bas
f the AllReduce
	���	 � ��
����
ssible to further
on and reductio
Reduce compu
Map output p

cast overheads.

e implemented
nal exchange (B

he implementa
rker nodes acro
hical reduction

them to all the

AllReduce with Su

Map output v
umbers. The va

are processed
of the Map-AllR
here each key

ue is the comb
associated with
e number of re
the number of

distinct Map ou
rs or values. M

ion, any comm
formed using th
m, max, min, co
as average can
ether with an a

mber of data pro
nature of the
 start combini
mpletes. It also
o use reduction
the operation.

w users to speci
the AllReduce
perform a sim

to check for th
e executed in e
data has been re
tOpRedProcess(
pRedValue> opR

ation of Map-A
sed implement
e component to
����� � ��� �

r reduce this co
on in the Map

utation is small
processing, Red

d efficiently us
BDE) [7] or hi

ations to perfo
oss multiple M
of the Map Ta

e workers.

um operation

values should
alues belonging
as a separate d
Reduce operat
corresponds t

ined value of
h that Map out
cords in the M

f unique Map o
utput keys wo
Map output va

mutative and as
his primitive. E
ount, and prod
be performed

additional elem
oducts. Due to
operations, M

ing the values
o allows the M
n trees or bidir

ify a post proc
e communicati
mple operation
he iteration term
each worker no
eceived.
(
RedResult);

AllReduce, such
tation[7], will
o:
������

ost by perform
worker nodes,

l. Map-AllRedu
duce task, Me

ing
ier-

orm
Map
ask

be
g to
data
tion
o a
the

tput
ap-

out-
uld

alue

sso-
Ex-

duct
by

ment
the
ap-
 as
ap-

rec-

cess
ion.

on
mi-
ode

h as
re-

ing
, as
uce

erge

Othe
municat
binary t

B. Fau
If th

son, it’s
from the
tation.

The
model o
cution o
Map-Al
the outp
ance mo
anism,
Map ou
case dup
done by
data pro
richer f
duplicat

C. Ben
Map

form in
moves
computa
bine ope

Map
optimiz
tions, re
commun
as many
tion and
in mapp
el, etc.
operatio
can com
in a sin
can be p

In th
Collecti
tive Ma
all-to-al
casted t
neous ru
implem

We
mentatio
ciencies
plement
timize t
nication
executin
shown i
ability

er efficient alg
tion include �
tree, and k-chai

ult Tolerance
he AllReduce c
s possible for th
e persistent sto

 fault toleranc
of MapReduce
of tasks. Dupli
llReduce result
put of the same
odel for Map-A
where Map-A

utput results fro
plicate results
y maintaining
oduct. It’s pos
fault tolerance
ted values in lo

efits
p-AllReduce re
n implementing
the overhead
ations and allo
eration in the c
p-AllReduce se
ze the computa
educing the nu
nications. Hier
y levels as nee
d the scale of th
pers, second lev
The mapper le

on of vanilla M
mbine the value
ngle physical
performed in re

VI.
his section we
ives for Hadoo
apReduce. Map
ll communicati
to all the work
running times t

mented using hie
present suffici
ons of the pri
s that can be g
tation of these
these implemen
n algorithms b
ng, the scale of
in MPI collect
to improve th

gorithms to imp
�at-tree/linear,
in trees [3].

communication
he workers to

orage to perform

ce model and t
make it possib

icate execution
ts due to the p
e task twice. Th
AllReduce wou

AllReduce woul
om the persiste
are detected. D
a set of Map
sible for the fr

e mechanisms,
ocalized areas o

educes the wo
g Reduce and
of Reduce an

ows the framew
communication
emantics allow
ation by perfor
umber and the
rarchical reduc
eded based on
he environmen
vel in the node
evel would be

MapReduce. Th
es emitted by m
node. All-Red
eal time when t

 IMPLEMENT

e present two i
op MapReduce
p-AllGather is
ions, where ea

kers taking adv
to avoid conge
erarchical redu
iently optimal
imitives to sho
gained through
e primitives. It
ntations using

based on the e
f the computati
tive communic
he primitive i

plement AllRe
pipeline, bino

n step fails for
read the Map o
m the All-Redu

the speculative
ble to have dup
ns can result in
possibility of a
he most trivial
uld be a best-ef
ld fall back to
nt storage (e.g

Duplicate detec
IDs with each

frameworks to
such as iden

of the reduction

ork each user h
Merge tasks.

nd Merge tasks
work to perform
n layer itself.
w the impleme
rming hierarch
size of interm

ction can be pe
the size of the

nt. For example
e and nth level i
similar to the

he local node a
multiple mappe
duce combine
the data is rece

TATIONS
implementation
and Twister4A
implemented u

ach Map outpu
vantage of the
estion. Map-Al
uction trees.

proof-of-conc
ow the perform
using even a m
’s possible to
more advance

environment th
ions, and the d
cations literatur
implementation

educe com-
omial tree,

r some rea-
output data
uce compu-

e execution
plicate exe-
n incorrect

aggregating
fault toler-

ffort mech-
o using the
. HDFS) in
tion can be

h combined
implement

ntifying the
n tree.

has to per-
It also re-

s from the
m the com-

entations to
hical reduc-

mediate data
erformed in
e computa-
e, first level
in rack lev-
“combine”

aggregation
ers running
processing

eived.

ns of Map-
Azure itera-
using linear
ut is broad-
inhomoge-
llReduce is

cept imple-
mance effi-
modest im-
further op-
ed commu-
hey will be
ata sizes as
re [7]. The
ns without

240

changing the user application makes it possible to optimize
them as a future work.

It is not our objective to find the most optimal implemen-
tations for each of the environments, especially for Clouds
since that might end up being a moving target due to the rap-
idly evolving and black box nature of Cloud environments.
This presents an opportunity for Cloud providers to offer
optimized implementations of these primitives as cloud infra-
structure services that can be utilized by the frameworks.

A. H-Collectives: Map-Collectives for Apache Hadoop
H-Collectives is the Map-Collectives implementation for

Apache Hadoop that can be used as a drop-in library with the
Hadoop distributions. H-Collectives uses the Netty NIO li-
brary, node-level data aggregations and caching to efficiently
implement the collective communications and computations.
Existing Hadoop Mapper implementations can be used with
these primitives with only very minimal changes. These
primitives work seamlessly with Hadoop dynamic scheduling
of tasks, support for multiple Map task waves, and other de-
sirable features of Hadoop while supporting the typical Ha-
doop fault tolerance and speculative executions as well.

A single Hadoop node may run several Map workers and
many more Map tasks belonging to a single computation. The
H-Collectives implementation maintains a single node-level
cache to store and serve the collective results to all the tasks
executing in a worker node.

H-Collectives speculatively schedules the tasks for the
next iteration, and the tasks are waiting to start as soon as all
the AllGather data is received, getting rid of most of the Ha-
doop job startup/cleanup and task scheduling overheads.

Task level fault tolerance checkpoints Map task output
data to HDFS using a background daemon, avoiding over-
head to the computation. In case this checkpointing fails for
some reason, failed Map tasks or even the whole iteration can
be re-executed.

1) H-Collectives Map-AllGather
This performs TCP-based best effort broadcasts for each

Map task output. Task output data is transmitted as soon as a
task is completed, taking advantage of the inhomogeneous
Map task completion times. Final aggregation of these data
products is done at the destination nodes only once per node.
If an AllGather data product is not received through the TCP
broadcasts, then it will be fetched from the HDFS.

2) H-Collectives Map-AllReduce
H-Collectives Map-AllReduce use n'ary tree-based hier-

archical reductions, where Map task level and node level
reductions would be followed by broadcasting of the locally
aggregated values to the other worker nodes. The final reduce
operation is performed in each of the worker nodes and is
done after all the Map tasks are completed and the data is
transferred.

B. Map-Collectives for Twister4Azure iterative MapReduce
Twister4Azure Map-Collectives are implemented using

the Windows Communication Foundation (WCF)-based Az-
ure TCP inter-role communication mechanism, while em-
ploying the Azure table storage as a persistent backup.

Twister4Azure collective implementations maintain a
worker node-level cache to store and serve the collective re-

sult values to all the tasks executing in that node. Twist-
er4Azure utilizes the collectives to perform synchronization
at the end of each iteration. It also uses the collective opera-
tions to communicate the new iteration information to the
workers to aid in the decentralized scheduling of the tasks for
the next iteration.

1) Map-AllGather
Map-AllGather performs simple TCP-based broadcasts

for each Map task output. Workers start transmitting the data
as soon as a task is completed. The final aggregation of the
data is performed in the destination nodes and is done only
once per node.

2) Map-AllReduce
Map-AllReduce uses a hierarchical processing approach

where the results are first aggregated in the local node and
then final assembly is performed in the destination nodes.
The iteration check happens in the destination nodes and can
be specified as a custom function or as a limit on the number
of iterations.

VII. EVALUATION
In this section we evaluate and compare the performance

of Map-Collectives with plain MapReduce using two real
world applications, Multi-Dimensional Scaling and K-means
clustering. The performance results are presented by breaking
down the total execution time into the different phases of the
MapReduce or Map-Collectives computations, providing a
more finely detailed performance model. This provides a
better view of various overheads in MapReduce and the op-
timizations provided by Map-Collectives to reduce some of
those overheads.

In the following figures, ‘Scheduling’ is the per iteration
(per MapReduce job) startup and task scheduling time.
‘Cleanup’ is the per iteration overhead from Reduce task exe-
cution completion to the iteration end. ‘Map overhead’ is the
start and cleanup overhead for each Map task. ‘Map varia-
tion’ is the overhead due to variation of data load, compute
and Map overhead times. ‘Comm+Red+Merge’ is the time
for shuffle, reduce execution, merge and broadcast. ‘Com-
pute’ and ‘Data load’ times are calculated using the average
compute only and data load times across all the tasks of the
computation. The common components (data load, compute)
are plotted at the bottom to highlight variable components.

Hadoop and H-Collectives experiments were conducted
in the FutureGrid Alamo cluster, which has Dual Intel Xeon
X5550 (8 total cores) per node, 12 GB RAM per node and a
1Gbps network. Twister4Azure tests were performed in Win-
dows Azure cloud, using Azure extra-large instances. Azure
extra-large instances provide 8 compute cores and 14 GB
memory per instance.

A. Multi-Dimensional Scaling (MDS) using Map-AllGather
The objective of MDS is to map a dataset in high-

dimensional space to a lower dimensional space, with respect
to the pairwise proximity of the data points [8]. In this paper,
we use parallel SMACOF [11, 12] MDS, which is an iterative
majorization algorithm. The input for MDS is an N*N matrix
of pairwise proximity values. The resultant lower dimension-
al mapping in D dimensions, called the X values, is an N*D
matrix.

241

e
e
M
w
in
b
th
ti
d
h
c
b

F

M
V
tr
F
h
ti
e
th
a

g
in
c
ta
M
in
s
v
h
k

A
in
o
r
s
s
A
m

Unweighted
eration, BCCalc
erates a portion
MDS BCCalc
which simply a
n order. This X

by the StressCa
he BCCalc ste
ively smaller

data. Hence MD
head. Usage of
computation e
broadcasting ste

1) H-Collec

Figure 5. MDS H
iteration to hig

We implem
MapReduce an
Vanilla MapRe
ributedCache t

Figure 5 shows
highlighting the
ion. We used

each iteration a
her highlight th

a 51200*51200
As seen in

gets rid of the
ng and job c

computation. H
ask overhead a

Map-AllReduce
ncreases are du

successive itera
vanilla MapRe
have few secon
keeping tasks.

2) Twister4
We implem

AllGather prim
ng. Twister4A

over simple MR
rithm to perform
shows the MD
strong scaling
AllGather base
mentation. The

d MDS results
c and StressCa
n of the total

computation
assembles the o
X value matrix
alc step of the
ep of the next i
amount of co
DS has larger

f the Map-AllG
liminates the
eps in that part

ctives MDS Ma

Hadoop using only
ghlight the overhea

mented the M
nd H-Collecti
educe impleme
to broadcast loo
s the MDS stro
e overhead of d
only the BC C
and skipped th
he AllGather c

0 matrix into a 5
Figure 5, the

communicatio
leanup overhe

However, we n
and Map variat
e-based imple
ue to the rapid
ations in H-Col
educe the Map
nds between th

4Azure MDS M
mented MDS f
mitive and MR-
Azure optimized
R-MB as it use
m TCP broadca

DS (with both
performance

ed implementa
e number of M

in two MapRe
alc. Each BCCa

X matrix. Th
is an aggreg

output of the M
x is then broad
current iteratio
iteration. MDS
mputations for
data loading an

Gather primitive
need for red

ticular computa

ap-AllGather

the BC Calculatio
ad. 20 iterations, 5

DS for Hado
ives Map-AllG
entation uses t
op variant data
ong scaling per
different phases
Calculation ste
he stress calcul
component. Th
51200*3 matrix
e H-Collectives
n, reduce, mer

ead of the van
notice a slight
tion in the case
ementation. W
scheduling of

llectives, wher
p tasks of suc
he scheduling t

Map-AllGather
for Twister4Az
-MB with opti
d broadcast is
es an optimized
asts of in-memo
BCCalc and
results comp

ation with the
Map tasks pe

educe jobs per
alc Map task g
he reduce step
gation operati

Map tasks toget
dcasted to be u
ons, as well as
S performs a re
r a unit of in
nd memory ov

e in MDS BCC
duce, merge a
ation.

on MapReduce job
1,200 data points.

op using van
Gather primiti
the Hadoop D
to the Map tas

rformance resu
s on the compu
p of the MDS
lation step to f

his test case sca
x.
s implementat
rge, task sched
nilla MapRedu
increase of M

e of H-Collectiv
We believe th

Map tasks acr
reas in the case
cessive iteratio
to perform hou

zure using M
imized broadca

an improvem
d tree-based alg
ory data. Figur
StressCalc ste

paring the M
MR-MB imp

r computation

r it-
en-
of

ion,
ther
sed
by

ela-
put

ver-
Calc
and

b per

nilla
ive.
Dis-
sks.
ults,
uta-
S in
fur-
ales

tion
dul-
uce

Map
ves

hese
ross
e of
ons

use-

ap-
ast-

ment
go-
re 6
eps)
ap-

ple-
n is

equal to
Map-Al
mance o
with opt

Figur

3) D
This

the Had
duce job
points, 6
tion. Th
51200*3
per Map
1.5 seco

Fi

Figu
Figure
plement
tasks at
mately r
ter at th
tion of t
the time
includes
age. Th
ing over

In F
sents th
tween t
Map-Al

o the number
llGather-based
of Twister4Az
timized broadc

re 6. MDS applic
iteration

Detailed analys
s section prese
doop MDS co
b is used. MD
6 iterations on
he total AllGa
3 data points. A
p task. Averag
onds per Map t

Figure 7. Hadoo

igure 8. H-Colle

ure 7 presents
8 presents MD
tation. These p
t a given mom
represents the a
hat given mom
the computatio
e spent by Map
s input data lo

he space betwe
rheads of the c

Figure 8, the s
he data loading
the iterations v
llGather primit

of total cores
d implementati
zure MDS by 1
cast in the curre

cation implemente
ns. 51,200 data poi

sis of overhead
ents a detailed
omputation. On
S computation

n 64 cores using
ather data size
Average data lo

ge actual MDS
task.

op MapReduce MD

ectives AllGather M

the MDS usi
DS using H-C
plot the total n
ent of the com
amount of usef

ment. Each blue
on. The width o
ap tasks in that
ading, calculat

een the blue ba
computation.
striped section

time. As can b
virtually disapp
tive.

of the comput
on improves t

13-42% over M
ent test cases.

ed using Twister4A
ints (~5GB).

d
d analysis of o
nly the BCCal

ns use 51200 *
g 64 Map task
e of this comp
oad time is 10.
BCCalc comp

DS-BCCalc histog

MDS-BCCalc hist

ing Hadoop M
Collectives AllG
number of exec
mputation, whic
ful work done
e bar represen
of each blue ba
t particular iter
tion and outpu
ars represents t

on each blue
be seen, the ov
pears with the

tation. The
the perfor-

MapReduce

Azure. 20

overhead in
lc MapRe-
51200 data

ks per itera-
putation is
61 seconds

pute time is

gram

ogram

MapReduce.
Gather im-
cuting Map
ch approxi-
in the clus-
ts an itera-
ar indicates
ration. This
ut data stor-
the remain-

bar repre-
verhead be-

use of the

242

d
d
te
e
ti
b
to
to
d

B

e
tw
u
a
s
th

c
to
c
(
n
lo
ti

M

F

H
T

4) Perform
Twister4Az

duce[2] and co
data communi
erms of the o

er4Azure can b
ive computatio

by using Map-
o H-Collective
o the data loa

data caching an

B. K-means Cl
K-means Cl

erative refinem
wo main steps

update step. In
assignment step
step in the Red
he beginning o

K-means Cl
computation. In
o a certain ce

combined inde
(new centroids
next iteration. K
oading and me
ions compared

1) H-Collec

Figure 9. Hado
Map-AllReduce W

Figure 10. Hadoop
AllReduce Stron

We implem
Hadoop using
The MapReduc

ance differenc
ure is already

ontains very low
cation overhe
overheads and

be considered a
ons. Hence the
collectives is l

es. A major com
ading, which T
nd cache-aware

lustering using
lustering[13] is

ment technique,
: the cluster as
n a typical M
p is performed

duce task, while
or end of each i
lustering centro
n this step all t
entroid) belong
ependently and
) are distribut
K-means Clust
emory overhea

d to the MDS ap
ctives K-means

oop K-means Clust
Weak scaling. 500 C

p MapReduce K-m
ng scaling. 500 Ce

mented the K-m
the Map-AllR

ce implementa

e of Twister4A
optimized for
w scheduling,
ads compared

d comparison
as a near ideal

overhead redu
low in Twister
mponent of Ha
Twister4Azure
e scheduling.

g Map-AllRedu
s often implem
, where each i
ssignment step

MapReduce imp
in the Map tas

e centroid data
iteration.
oid update step
the values (dat
ging to each k
d the resultant
ed to all the M
ering has relati
ad vs. the num
pplication discu
s Clustering-Al

tering comparison
Centroids, 20 Dime

means Clustering &
ntroids, 20 Dimen

means Clusterin
Reduce and pl
ation uses in-m

Azure vs. Hadoo
iterative MapR
data loading a

d to Hadoop.
purposes, Tw
Hadoop for ite

uction we achie
r4Azurecompa
doop MDS is d
avoids by us

uce
mented using an

teration perfor
and the centro

plementation,
sk and the upd

a is broadcasted

p is an AllRedu
ta points assign
key (centroid)
t key-value pa
Map tasks of
ively smaller d

mber of compu
ussed above.
llReduce

with H-Collective
ensions, 10 iteratio

& H-Collectives M
nsions,10 iterations

ng application
lain MapRedu

map combiners

op
Re-
and

In
wist-
era-
eve

ared
due
ing

n it-
rms
oids
the

date
d at

uce
ned
are
airs
the

data
uta-

es
ons.

Map-
s.

for
uce.
s to

perform
map-to-

Figu
perform
the wor
means
scaled t
Strong s
more M
municat
computa

As w
of the c
job clea
A sligh
can be
mentatio
MDS se

2) T

Figure 11
Centro

Figu
Cen

We
Twister4
MapRed
in-map
values t
Figure
formanc
keeping
the K-m
we scal
constan
implem
merge o

m aggregation
-reduce interme
ure 9 illustrates

mance where w
rkload per cor
Clustering str

the computatio
scaling test cas

Map task waves
tion, resulting
ation
we can see, the
communication

anup overhead
ht increase of M

noticed in the
on, similar to t
ection 7.a.1.
Twister4Azure

1. Twister4Azure K
oids, 20 Dimension

ure 12. Twister4Az
ntroids, 20 Dimens

implemented t
4Azure using
duce-MergeBr
combiners to p
to minimize th
11 shows the
ce results, wh
g the workload
means Clusteri
led the numbe

nt. As can be se
mentation gets
overheads of th

of the values
ediate data tran
s the K-means

we scaled the co
re constant. Fi
rong scaling

on while keepin
ses with a sma
s optimizing th

in relatively s

e H-Collective
n, reduce, mer
of the vanilla M
Map task over

e case of Map-
the behavior o

K-means Clus

K-means weak sca
ns. 10 iterations. 3

zure K-means Clu
sions, 10 iterations

the K-means C
g the Map-A
roadcast. MR-M
perform local a

he size of map
K-means Clus

here we scale
d per core con
ing strong sca
er of cores wh
een in these fig
rid of the com

he MR-MB com

to minimize t
nsfers.
s Clustering we
omputation wh
igure 10 prese
performance,
ng the data siz
aller number of
he intermediate
smaller overhe

s implementati
rge, task sche
MapReduce co
rhead and Map
-AllReduce ba

observed and ex

stering-AllRedu

aling with Map-Al
2 to 256 Million d

ustering strong scal
s. 128 million data

Clustering appl
llReduce prim
MB implemen
aggregation of

p-to-reduce data
stering weak s

the computat
nstant. Figure 1
aling performan
ile keeping th

gures, the Map-
mmunication, r
mputation.

the size of

eak scaling
ile keeping

ents the K-
where we

ze constant.
f nodes use
e data com-
ead for the

ion gets rid
duling and

omputation.
p variation

ased imple-
xplained in

uce

llReduce. 500
data points.

ling. 500
a points.

lication for
mitive and
ntation uses
f the output
a transfers.
caling per-

tions while
12 presents
nce, where
e data size
-AllReduce
reduce and

243

VIII. BACKGROUND AND RELATED WORKS

A. Collective Communication Primitives
Collective communication operations[6] facilitate opti-

mized communication and coordination between groups of
nodes of a distributed computation, and are used heavily in
the MPI type of HPC applications. These powerful operations
make it much easier and efficient to perform complex data
communications and coordination inside the distributed par-
allel applications. Collective communication also implicitly
provides some form of synchronization across the participat-
ing tasks. There exist many different implementations of
HPC collective communication primitives supporting numer-
ous algorithms and topologies suited to different environ-
ments and use cases. The best implementation for a given
scenario depends on many factors, including message size,
number of workers, topology of the system, the computation-
al capabilities/capacity of the nodes, etc. Oftentimes collec-
tive communication implementations follow a poly-algorithm
approach to automatically select the best algorithm and to-
pology for the given scenario.

Data redistribution communication primitives can be used
to distribute and share data across the worker processors.
Examples of these include broadcast, scatter, gather, and all-
gather operations. Data consolidation communication primi-
tives can be used to collect and consolidate data contributions
from different workers. Examples of these include reduce,
reduce-scatter and allreduce. We can further categorize col-
lective communication primitives based on the communica-
tion patterns as well, such as All-to-One (gather, reduce),
One-to-All (broadcast, scatter), All-to-All (allgather, allre-
duce, reduce-scatter) and Synchronization (barrier).

The MapReduce model supports the All-to-One opera-
tions through the Reduce step. The broadcast operation of
MR-MB model (section II) serves as an alternative to the
One-to-All type operations. The MapReduce model contains
a barrier between the Map and Reduce phases and the itera-
tive MapReduce has a barrier between the iterations. The
solutions presented in this paper focus on introducing All-to-
All type collective communication operations to the MapRe-
duce model.

We can implement All-to-All communications using pairs
of existing All-to-One and One-to-All type operations present
in the MR-MB model. For example, the AllGather operation
can be implemented as Reduce-Merge followed by Broad-
cast. However, these types of implementations would be inef-
ficient and harder to use compared to dedicated optimized
implementations of All-to-All operations.

B. MapReduce and Apache Hadoop
MapReduce, introduced by Google [14], consists of a

programming model, storage architecture and an associated
execution framework for distributed processing of very large
datasets. MapReduce frameworks take care of data partition-
ing, task parallelization, task scheduling, fault tolerance, in-
termediate data communication, and many other aspects of
these computations for the users. MapReduce provides an
easy to use programming model, allowing users to utilize the
distributed infrastructures to easily process large volumes of
data.

MapReduce frameworks are typically not optimized for
the best performance or parallel efficiency of small-scale
applications. The main goals of MapReduce frameworks in-
clude framework-managed fault tolerance, ability to run on
commodity hardware, ability to process very large amounts
of data, and horizontal scalability of compute resources.

Apache Hadoop[15], together with Hadoop distributed
parallel file system (HDFS) [16], provides a widely used
open source implementation of MapReduce. Hadoop sup-
ports data locality-based scheduling and reduces the data
transfer overhead by overlapping intermediate data commu-
nication with computation. Hadoop performs duplicate exe-
cutions of slower tasks and handles failures by rerunning the
failed tasks using different workers. MapReduce frameworks
like Hadoop trade off costs such as large startup overhead,
task scheduling overhead and intermediate data persistence
overhead for better scalability and reliability

C. Iterative MapReduce and Twister4Azure
Data-intensive iterative MapReduce computations are a

subset of iterative computations, where individual iterations
can be specified as MapReduce computations. Examples of
applications that can be implemented using iterative MapRe-
duce include PageRank, Multi-Dimensional Scaling [1, 17],
K-means Clustering, Descendent query [5], LDA, and Col-
laborative Filtering with ALS-WR.

These data-intensive iterative computations can be per-
formed using traditional MapReduce frameworks like Ha-
doop by manually scheduling the iterations from the job cli-
ent driver, albeit in an un-optimized manner. However, there
exist many possible optimizations and programming model
improvements to enhance the performance and usability of
the iterative MapReduce programs. Such optimization oppor-
tunities are highlighted by the development of many iterative
MapReduce frameworks such as Twister [4], HaLoop [5],
Twister4Azure [1], Daytona [18] and Spark [19]. Optimiza-
tions exploited by these frameworks include caching of loop-
invariant data, cache-aware scheduling of tasks, iterative-
aware programming models, direct memory streaming of
intermediate data, iteration-aware fault tolerance, caching of
intermediate data (HaLoop reducer input cache), dynamic
modifications to cached data (e.g. genetic algorithm), and
caching of output data (in HaLoop).

Twister4Azure is a distributed decentralized iterative
MapReduce runtime for Windows Azure Cloud that was de-
veloped utilizing Azure cloud infrastructure services. Twist-
er4Azure optimizes the iterative MapReduce computations
by multi-level caching of loop invariant data, performing
cache-aware scheduling, optimizing intermediate data trans-
fers, optimizing data broadcasts and many other optimiza-
tions described in Gunarathne et al [1].

IX. FUTURE WORKS – MAP-REDUCESCATTER
There are iterative MapReduce applications where only a

small subset of loop invariant data product is needed to pro-
cess the subset of input data in a Map task. In such cases, it’s
inefficient to make all the loop invariant data available to
such computations. In some of these applications, the size of
loop variant data is too large to fit into the memory and intro-
duce communication and scalability bottlenecks as well. An

244

example of such a computation is PageRank. The Map-
ReduceScatter primitive, modeled after MPI ReduceScatter,
is aimed to support such use cases in an optimized manner.

Map-ReduceScatter gets rid of the inefficiency of simple
broadcast ofing all the data to all the workers. Another alter-
native approach is to perform a join of loop invariant input
data and loop variant data using an additional MapReduce
step. However, this requires all the data to be transported over
the network from Map tasks to Reduce tasks, making the
computation highly inefficient.

Map-ReduceScatter primitive is still a work in progress
and we are planning on including more information about it
in our future publications.

X. CONCLUSIONS

We introduced Map-Collectives, collective communica-
tion operations for MapReduce inspired by MPI collectives,
as a set of high level primitives that encapsulate some of the
common iterative MapReduce application patterns. Map-
Collectives improve the communication and computation
performance of the applications by enabling highly optimized
group communication across the workers, getting rid of un-
necessary/redundant steps, and by enabling the frameworks
to use a poly-algorithm approach based on the use case. Map-
Collectives also improve the usability of the MapReduce
frameworks by providing abstractions that closely resemble
the natural application patterns. They also decrease the im-
plementation burden on the developers by providing opti-
mized substitutions for certain steps of the MapReduce mod-
el. We envision a future where many MapReduce and itera-
tive MapReduce frameworks support a common set of porta-
ble Map-Collectives and consider this work as a step in that
direction.

In this paper, we defined Map-AllGather and Map-
AllReduce Map-Collectives and implemented Multi-
Dimensional Scaling and K-means Clustering applications
using these operations. We also presented the H-Collectives
library for Hadoop, which is a drop-in Map-Collectives li-
brary that can be used with existing MapReduce applications
with only minimal modification. We also presented a Map-
Collectives implementation for Twister4Azure iterative
MapReduce framework as well. MDS and K-means applica-
tions were used to evaluate the performance of Map-
Collectives on Hadoop and on Twister4Azure, depicting up to
33% and 50% speedups over the non-collectives implementa-
tions by getting rid of the communication and coordination
overheads.

ACKNOWLEDGMENT
We would like to thank colleagues and members of the Digi-
tal Science Center at Indiana University for helpful discus-
sions and contributions to Twister4Azure and the present
work. We gratefully acknowledge support from Microsoft for
Azure Cloud Academic Resources Allocation, which was
critical for our experiments. This project is in part supported
by National Science Foundation CAREER Award OCI-
1149432. Thilina Gunarathne was supported by a fellowship
sponsored by Persistent Systems.

REFERENCES
[1] T. Gunarathne, B. Zhang, T.L. Wu, and J. Qiu, "Portable Parallel

Programming on Cloud and HPC: Scientific Applications of
Twister4Azure," Proc. Fourth IEEE International Conference on
Utility and Cloud Computing (UCC), pp 97-104, 5-8 Dec. 2011, doi:
10.1109/UCC.2011.23.

[2] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, "Scalable parallel
computing on clouds using Twister4Azure iterative MapReduce,"
Future Generation Computer Systems, vol. 29, pp. 1035-1048, Jun
2013.

[3] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, "Performance analysis of MPI collective
operations," Proc. 19th IEEE International Parallel and Distributed
Processing Symposium, 2005, doi:10.1109/IPDPS.2005.335

[4] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, et al.,
"Twister: A Runtime for iterative MapReduce," Proc. First
International Workshop on MapReduce and its Applications at ACM
HPDC, 2010,pp 810-818, doi: 10.1145/1851476.1851593

[5] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, "HaLoop: Efficient
Iterative Data Processing on Large Clusters," Proc. VLDB Endow.,
vol. 3, pp. 285-296, Sep 2010.

[6] MPI Forum, "MPI: A Message-Passing Interface Standard, Version
3.0"[Online], Sep 2012, Available: http://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf

[7] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn,
"Collective communication: theory, practice, and experience,"
Concurrency and Computation: Practice and Experience, vol. 19, pp.
1749-1783, 2007.

[8] J. B. Kruskal and M. Wish, Multidimensional Scaling: Sage
Publications Inc., 1978.

[9] R. W. Hockney, "The communication challenge for MPP: Intel
Paragon and Meiko CS-2," Parallel Computing, vol. 20, pp. 389-398,
1994.

[10] J. Ekanayake, T. Gunarathne, and J. Qiu, "Cloud Technologies for
Bioinformatics Applications," Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, pp. 998-1011, 2011.

[11] S.H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, "Dimension reduction and
visualization of large high-dimensional data via interpolation," Proc.
19th ACM International Symposium on High Performance Distributed
Computing, 2010, pp 203-214, doi:10.1145/1851476.1851501

[12] J. de Leeuw, "Convergence of the majorization method for
multidimensional scaling," Journal of Classification, vol. 5, pp. 163-
180, 1988.

[13] S. Lloyd, "Least squares quantization in PCM," Information Theory,
IEEE Transactions on, vol. 28, pp. 129-137, 1982.

[14] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on
large clusters," Commun. ACM, vol. 51, pp. 107-113, 2008.

[15] ASF, "Apache Hadoop" [Online], Available:
http://hadoop.apache.org/core/. (retrieved: Mar 2014)

[16] ASF, "Hadoop Distributed File System - HDFS" [Online], Available:
http://hadoop.apache.org/hdfs/ (retrieved: Mar 2014)

[17] Z. Bingjing, R. Yang, W. Tak-Lon, J. Qiu, A. Hughes, and G. Fox,
"Applying Twister to Scientific Applications," Proc. Second IEEE
International Conference on Cloud Computing Technology and
Science (CloudCom), pp 25-32, Dec 2010, doi:
10.1109/CloudCom.2010.37

[18] Microsoft, "Microsoft Daytona" [Online], Available :
http://research.microsoft.com/en-us/projects/daytona/. (ret: Mar 2014)

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
"Spark: Cluster Computing with Working Sets," 2nd USENIX
conference on Hot Topics in Cloud Computing (HotCloud '10),
Boston, 2010.

245

