
Model-Centric Computation Abstractions in Machine
Learning Applications

Bingjing Zhang
zhangbj@indiana.edu

Bo Peng
pengb@indiana.edu

Judy Qiu
xqiu@indiana.edu

School of Informatics and Computing
Indiana University

Bloomington, IN, USA

ABSTRACT
We categorize parallel machine learning applications into
four types of computation models and propose a new set
of model-centric computation abstractions. This work sets
up parallel machine learning as a combination of training
data-centric and model parameter-centric processing. The
analysis uses Latent Dirichlet Allocation (LDA) as an exam-
ple, and experimental results show that an efficient parallel
model update pipeline can achieve similar or higher model
convergence speed compared with other work.

CCS Concepts
•Information systems → Data analytics; •Theory of
computation → Parallel computing models;

Keywords
Machine Learning, Big Model, Model Computation

1. INTRODUCTION
Machine learning algorithms typically learn from train-

ing examples and make predictions through derived model
parameters1. During this period, the training data are re-
peatedly processed, and the model parameters are iteratively
updated. When applying machine learning algorithms on a
large training dataset with a large number of model param-
eters, the inherent challenge lies in that while training data
are split among parallel workers, the number of model pa-
rameters, which all local computations depend on, remain
extremely large. As a result, communicating these model
parameters from their home storage can generate significant
synchronization overhead.

In some cases, when the total number of model param-
eters is small enough that the full model can be held on
one machine, classic collective communication methods are

1 http://ai.stanford.edu/˜ronnyk/glossary.html

applied to synchronize model parameters. Though these op-
erations are high-performance, some current big model prob-
lems have exceeded their capabilities. Therefore, new solu-
tions have been proposed to synchronize big models more
efficiently. In this paper, we categorize these solutions into
four computation models.

Based on our categorization of computation models, we
propose a set of abstractions to enhance traditional data-
centric processing with sophisticated model-centric process-
ing. By adjusting the model synchronization mechanisms
and frequencies, we aim to answer the following four ques-
tions:

• What part of the model needs to be updated?
• When should the model update happen?
• Where should the model update occur?
• How is the model update performed?

With our new computation abstractions, we implement La-
tent Dirichlet Allocation (LDA) [5] and compare it with
state-of-the-art implementations such as Yahoo! LDA [3]
and Petuum LDA [1] on the “clueweb” dataset2 with a total
of 10 billion model parameters. We conduct performance
experiments on a cluster of Intel Haswell architecture with
up to 100 nodes and a total of 4000 parallel threads. The
results show that through an efficient parallel model update
pipeline, the new model-centric computation abstractions
can achieve similar or faster model convergence speed com-
pared with other approaches.

The following sections describe: a computation model sur-
vey (Section 2), model-centric abstractions (Section 3), ex-
periments (Section 4), and conclusions (Section 5).

2. COMPUTATION MODEL SURVEY
In this section, we use LDA to demonstrate the differ-

ences among computation models. LDA can be viewed as
a process of decomposing a word-document matrix into one
word-topic matrix and another document-topic matrix. Col-
lapsed Gibbs Sampling [13] is a Markov chain Monte Carlo
type inference algorithm for LDA topic modeling and shows
high scalability in parallelization [11, 16], In the “initialize”
phase, each training token, is assigned to a random topic de-
noted as zij . It then begins to reassign topics to each token
xij = w by sampling from a multinomial distribution of a

210% of ClueWeb09 (a collection of English web pages, http:
//lemurproject.org/clueweb09/)



conditional probability of zij :

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ij
wk + β∑

wN
¬ij
wk + V β

(
M¬ij

kj + α
)

Here superscript ¬ij refers to the corresponding token ex-
cluded. V is the vocabulary size. Nwk is the token count of
word w assigned to topic k in K topics, and Mkj is the token
count of topic k assigned in document j. Hyperparameters
α and β control the topic density in the final model output.
The model gradually converges during the process of itera-
tive sampling. This is the phase where “burn-in” occurs and
finally reaches the “stationary” stage. In real LDA trainers,
the SparseLDA [17] algorithm is often used as an optimized
CGS implementation.

2.1 Computation Model Attributes
Worker Each parallel unit is called a “worker” in a com-

putation model. In this implementation, there are usually
two forms of parallelism: I. Distributed environment and
II. Multi-thread environment. In Form I, each worker is a
process, and the workers are synchronized through network
communication. In Form II, the workers are threads which
are coordinated through synchronization mechanisms.

Model The LDA model contains four parts: I. Zij -
topic assignments on tokens, II.

∑
wN

¬ij
wk - topics’ token

counts, III. Nwk - words’ token counts on topics, IV. Mkj

- documents’ token counts on topics. Part I is stored along
with the training tokens. Part II is always shared between
workers. When Part III is stored locally, Part IV is shared
between workers, and vice versa.

Synchronized/Asynchronous Algorithm Computa-
tion models can be divided into those with synchronized
algorithms and others with asynchronous algorithms. In
synchronized algorithms, the computation progress on one
worker depends on the progress on other workers; asyn-
chronous algorithms lack this dependency.

The Latest/Stale Model Computation models may
use either the latest values or stale values from the shared
model. The “latest” means that the current model used in
computation is up-to-date and not modified simultaneously
by other workers, while the “stale” indicates the values in
the model are old. Since the computation model using the
latest model maintains model consistency, its model output
contains less approximation and is close to the output of
the sequential algorithm. In LDA, the consistency of Model
Part III and Part IV are the most relevant. Model Part
II is commonly stale because the sum of token counts per
topic is very large, thus changes on these values are hardly
noticeable.

2.2 Types of Computation Models
LDA implementations can be classified into four types of

computation models, each of which uses a different means to
handle the model and coordinate workers (see Fig. 1). The
computation model description focuses on the distributed
environment, in which Model Part III is chosen to be shared
between workers. However, computation models can also be
applied to a multi-thread environment. In a system with
two forms of parallelism, model composition is commonly
adapted, with one type of model at Form I and another at
Form II.

Computation Model A This computation model uses
a synchronized algorithm to coordinate parallel workers. In

ModelModel

Worker Worker Worker

ModelModel

Worker Worker Worker

ModelModel

Worker Worker Worker
Worker Worker Worker

Model 1Model 1 Model 2Model 2 Model 3Model 3

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The stale model

• Asynchronous algorithm
• The stale model

(A) (B)

(C) (D)

Figure 1: Types of Computation Models

each iteration, once a worker samples a token, it locks a
word’s model parameters and prevents other workers from
accessing them. When the sampling is performed and the
related model parameters are updated, the worker unlocks
the parameters. As long as workers compute and update
on different model parameters, they can execute in parallel.
Only one worker is allowed to access a word’s model param-
eters at a time; therefore the model parameters used in local
computation is always the latest. In practice, this compu-
tation model is seldom applied due to the high overhead of
locking.

Computation Model B The next computation model
also uses a synchronized algorithm. Each worker first takes
a partition of the shared model and performs sampling. Af-
terwards, the model is shifted between workers. When all
model partitions are accessed by all workers, an iteration is
complete. Through model rotation, each word’s model pa-
rameters are computed and updated by one worker at a time
so that the consistency of the model is maintained.

Computation Model C Computation Model C applies
a synchronized algorithm but with the stale model. In a
single iteration, each worker first fetches all the model pa-
rameters required by local computation. If the local model
is too large to fit in memory, local computation can be split
into stages where each time, a part of the model parameters
is fetched and computed. When the local computation is
completed, modifications of the local model from all work-
ers are gathered to update the model.

Computation Model D With this model, an asyn-
chronous algorithm employs the stale model. Each worker
independently fetches related model parameters, performs
local computation, and returns model modifications. Unlike
Computation Model A, other workers are allowed to fetch or
update the same word’s model parameters during the period
of local computation. In contrast to Computation Model B
and C, there is no synchronization barrier in this computa-
tion model.

2.3 Discussion
Previous work shows many machine learning algorithms

can be implemented in the MapReduce paradigm [7]; later
on, model communication is improved by collective commu-
nication operations in iterative MapReduce [12, 19, 6]. How-



Table 1: LDA CGS Implementations

Implementation Algorithm
Computation

Model
PLDA [15] CGS C
PowerGraph LDA [2] CGS C
Yahoo! LDA [3] SparseLDA D
Peacock [16] SparseLDA D & B
Parameter Server [10] CGS, etc. D
Petuum 0.93 [8] SparseLDA D
Petuum 1.1 [1] SparseLDA B & D

ever, the solution is a special case in Computation Model
C and is not immediately scalable as the model size grows
larger than the capacity of the local memory. As current
models may reach 1010 ∼ 1012 parameters, Parameter Server
type solutions [10, 3, 14, 4] store the model on a set of server
machines and use Computation Model D to reduce commu-
nication overhead. Petuum, however, shows model synchro-
nization is important to model convergence, and a compu-
tation model mixed with C and D is proved to have better
performance [8]. Furthermore, Petuum implements Compu-
tation Model B [1, 9], which shows higher model convergence
speed with the latest model.

We show the computation models used in each LDA im-
plementation in Table 1. Model composition also occurs in
Peacock [16] and Petuum 1.1 [1], in which one computation
model is used in the distributed environment and another in
the multi-thread environment.

3. MODEL-CENTRIC ABSTRACTIONS
Although individual solutions utilize a particular compu-

tation model, the effectiveness of these solutions is not well
studied. To improve model update rate and increase model
convergence speed, parallelization of machine learning appli-
cations should concentrate more on model-centric process-
ing. In order to build an efficient parallel model update
pipeline, we derive a new set of model-centric computation
abstractions from the computation models. These abstrac-
tions contain model abstractions and APIs for model syn-
chronization.

We split model parameters into partitions and use the con-
cept “table” to associate partitions on different workers and
form a complete model. For a small model, traditional col-
lective communication APIs such as “broadcast”, “reduce”,
“allgather”, and “allreduce” are used to efficiently synchro-
nize model copies on all the workers.

For a large model which cannot be held in the memory of
one machine, two types of model abstractions are defined:
the global table and the local table. In global tables, each
partition has a unique ID and represents a part of the whole
distributed model; but in local tables, partitions on different
workers can share the same partition ID. Each of these par-
titions sharing the same ID is considered a local version of a
partition in the full distributed model. In addition, we define
three new model synchronization APIs. The first two opera-
tions are paired. “syncGlobalWithLocal” reduces the model
partitions from local tables to the global table, and “syn-
cLocalWithGlobal” redistributes the model partition in the
global table to local tables. Routing optimized broadcasting
is used if some partitions are required by all the workers.
Lastly, “rotateGlobal” considers workers in a ring topology

and shifts the partitions in the global table between neigh-
bors. When the operation is complete, each worker will hold
a different set of partitions. Since each worker only commu-
nicates to its neighbors, “rotateGlobal” can transmit global
data in parallel without any network conflicts.

Here we briefly discuss the applicability of model-centric
computation abstractions based on the computation depen-
dency between parallel workers and the model. The com-
putation dependency can be represented as a matrix, where
each row signifies a worker, each column represents a model
partition, and each element shows the requirements of the
partition in local computation. Based on the density of this
matrix, we can choose proper operations in different appli-
cations. If the matrix is dense, we suggest using the “ro-
tateGlobal” operation. If the matrix is sparse, using “sync-
GlobalWithLocal” and “syncLocalWithGlobal” is a superior
solution.

The new abstractions enable developers to handle complex
model synchronization and program iterative machine learn-
ing algorithms more productively. Many algorithm kernels
and applications can be supported in the new abstractions,
including but not limited to:

• Expectation-Maximization Type

– K-Means Clustering
– Collapsed Variational Bayesian for topic modeling

(e.g. LDA)

• Gradient Optimization Type

– Stochastic Gradient Descent and Cyclic Coordi-
nate Descent for classification (e.g. SVM and Lo-
gistic Regression), regression (e.g. LASSO), col-
laborative filtering (e.g. Matrix Factorization)

• Markov Chain Monte Carlo Type

– Collapsed Gibbs Sampling for topic modeling
(e.g. LDA)

If given access to the new abstractions, we can further pro-
vide answers to the four questions “what”, “when”, “where”,
and “how” in model-centric computations. The new opera-
tion APIs allow us to adjust the mechanisms and frequencies
of model synchronization. By exploiting the sparsity of com-
putation dependency and optimizing routing topology, the
new abstractions can benefit many machine learning appli-
cations.

4. EXPERIMENTS
The LDA experiments are run on the Juliet cluster3 which

contains 32 nodes each with two 18-core 36-thread Intel
Xeon E5-2699 processors and 96 nodes each with two 12-
core 24-thread Intel Xeon E5-2670 processors. In the exper-
iments, 31 nodes with E5-2699 and 69 nodes with E5-2670
are used to form a cluster of 100 nodes, each with 40 threads
and 128GB memory. All the tests are performed with In-
finiband through IPoIB protocol.

We use the “clueweb” dataset to test the effectiveness of
the new model-centric computation abstractions. “clueweb”
contains 50.5 million documents and 12.48 billion tokens.
Model Part III (words’ model parameters) is shared between
workers. It contains 1 million words, each with 10 thousand
topics, resulting in a total of 10 billion parameters. The

3 https://portal.futuresystems.org



0 5000 10000 15000 20000 25000
Execution Time (s)

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5
M

od
el

 L
ik

el
ih

oo
d

1e11

Petuum
Yahoo!LDA
lgs
lgs-4s
rtt

Figure 2: Model Convergence Speed on “clueweb”

initial model size is about 14.7GB. Hyperparameters α and
β are both set to 0.01. With the new abstractions, two LDA
applications are developed on top of Harp [20]. One is “rtt”,
which follows Computation Model B (uses “rotateGlobal”)
in Parallelism Form I and Computation Model D in Form
II. Another is “lgs”, which follows Computation Model C
(uses “syncGlobalWithLocal” and “syncLocalWithGlobal”)
in Form I and Computation Model D in Form II. Model Part
II is simply synchronized with the “allreduce” operation per
iteration in two implementations. Additional details of the
experiments are reported elsewhere [18].

The performance results are presented in Fig. 2. Both
“rtt” and Petuum use the same set of computation mod-
els and achieve similar model convergence speed. They are
remarkably faster than the other implementations. “lgs”
proves to be faster than Yahoo! LDA at the beginning, but
at later stages, their model convergence speed tends to over-
lap. Through adjusting the number of model synchroniza-
tion frequencies to 4 per iteration, “lgs-4s” exceeds Yahoo!
LDA from start to finish.

5. CONCLUSIONS
This paper investigates existing parallel solutions of ma-

chine learning applications and illustrates four computa-
tion models. This provides a new set of abstractions which
enhance model-centric processing for parallelization of ma-
chine learning applications. Experimental results show that
the two LDA applications developed under model-centric
computation abstractions can achieve similar or even faster
model convergence speed compared with state-of-the-art im-
plementations. In the future, by adjusting model update
mechanisms and frequencies, we expect to build an efficient
general parallel model update pipeline with high model con-
vergence speed.

6. ACKNOWLEDGMENTS
We gratefully acknowledge support from Intel Parallel

Computing Center (IPCC) Grant, NSF 1443054 CIF21
DIBBs 1443054 Grant, and NSF OCI 1149432 CAREER
Grant. We appreciate the system support offered by Fu-
tureSystems.

7. REFERENCES
[1] Petuum LDA. https://github.com/petuum/bosen/wi

ki/Latent-Dirichlet-Allocation.

[2] PowerGraph LDA. https://github.com/dato-code/P
owerGraph/blob/master/toolkits/topic modeling.

[3] Yahoo! LDA. https://github.com/sudar/Yahoo LDA.

[4] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,
and A. Smola. Scalable Inference in Latent Variable
Models. In WSDM, 2012.

[5] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. The Journal of Machine Learning
Research, 3:993–102, 2003.

[6] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and
I. Stoica. Managing Data Transfers in Computer
Clusters with Orchestra. ACM SIGCOMM Computer
Communication Review, 41(4):98–109, 2011.

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Ng, and K. Olukotun. Map-Reduce for Machine
Learning on Multicore. In NIPS, 2007.

[8] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim,
P. Gibbons, G. Gibson, G. Ganger, and E. Xing. More
Effective Distributed ML via a Stale Synchronous
Parallel Parameter Server. In NIPS, 2013.

[9] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and
E. Xing. On Model Parallelization and Scheduling
Strategies for Distributed Machine Learning. In NIPS,
2014.

[10] M. Li, D. Andersen, J. W. Park, A. Smola, A. Ahmed,
V. Josifovski, J. Long, E. Shekita, and B.-Y. Su.
Scaling Distributed Machine Learning with the
Parameter Server. In OSDI, 2014.

[11] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed Algorithms for Topic Models. The Journal
of Machine Learning Research, 10:1801–1828, 2009.

[12] J. Qiu and B. Zhang. Mammoth Data in the Cloud:
Clustering Social Images. Cloud Computing and Big
Data, 23:231, 2013.

[13] P. Resnik and E. Hardist. Gibbs Sampling for the
Uninitiated. Technical report, University of Maryland,
2010.

[14] A. Smola and S. Narayanamurthy. An Architecture for
Parallel Topic Models. VLDB, 3(1-2):703–710, 2010.

[15] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and
E. Chang. PLDA: Parallel Latent Dirichlet Allocation
for Large-Scale Applications. In AAIM, pages
301–314. Springer, 2009.

[16] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin,
L. Wang, Y. Gao, C. Law, and J. Zeng. Peacock:
Learning Long-Tail Topic Features for Industrial
Applications. ACM TIST, 6(4):47, 2015.

[17] L. Yao, D. Mimno, and A. McCallum. Efficient
Methods for Topic Model Inference on Streaming
Document Collections. In KDD, 2009.

[18] B. Zhang, B. Peng, and J. Qiu. High Performance
LDA through Collective Model Communication
Optimization. In ICCS, 2016.

[19] B. Zhang and J. Qiu. High Performance Clustering of
Social Images in a Map-Collective Programming
Model. In SoCC, 2013.

[20] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective
Communication on Hadoop. In IC2E, 2015.


