
Harp: Collective Communication on Hadoop

Bingjing Zhang, Yang Ruan, Judy Qiu

Computer Science Department
Indiana University

Bloomington, IN, USA
zhangbj, yangruan, xqiu@indiana.edu

Abstract—Big data processing tools have evolved rapidly in
recent years. MapReduce has proven very successful but is
not optimized for many important analytics, especially those
involving iteration. In this regard, Iterative MapReduce frame-
works improve performance of MapReduce job chains through
caching. Further, Pregel, Giraph and GraphLab abstract data
as a graph and process it in iterations. But all these tools are de-
signed with a fixed data abstraction and have limited collective
communication support to synchronize application data and
algorithm control states among parallel processes. In this paper,
we introduce a collective communication abstraction layer
which provides efficient collective communication operations
on several common data abstractions such as arrays, key-values
and graphs, and define a MapCollective programming model
which serves the diverse collective communication demands in
different parallel algorithms. We implement a library called
Harp to provide the features above and plug it into Hadoop
so that applications abstracted in MapCollective model can
be easily developed on top of MapReduce framework and
conveniently integrated with other tools in Apache Big Data
Stack. With improved expressiveness in the abstraction and
excellent performance on the implementation, we can simul-
taneously support various applications from HPC to Cloud
systems together with high performance.

Keywords-Collective Communication; Big Data Processing;
Hadoop

I. INTRODUCTION

Beginning with the publication of Google’s MapReduce

paper [1], the last decade saw a huge shift in the evolution

of big data processing tools. Since then Hadoop [2], the

open source version of Google MapReduce, has become

the mainstream of big data processing, with many other

tools emerging to handle big data problems. Extending the

original MapReduce model to include iterative MapReduce,

tools such as Twister [3] and HaLoop [4] can cache loop

invariant data in iterative algorithms locally to avoid repeat

input data loading in a MapReduce job chain. Spark [5]

also uses caching to accelerate iterative algorithms by ab-

stracting computations as transformations on RDDs instead

of restricting computations to a chain of MapReduce jobs.

To process graph data, Google unveiled Pregel [6] and soon

Giraph [7] emerged as its open source version.

Regardless of their differencess, all such tools are based

on a kind of “top-down” design. Each has a fixed program-

ming model which includes a data abstraction, a computation

model and a communication pattern. The catch is that

individual tools with a fixed pattern cannot adapt to a variety

of applications, which could cause performance inefficiency.

For example, in k-means clustering with Lloyd’s algo-

rithm [8], every parallel task in the successive iteration needs

all the centroids generated in the previous iteration. Mahout

[9] on Hadoop chooses to reduce the outputs from all the

map tasks in one reduce task, store the new centroids data

on HDFS, and read the data back to memory for the next

iteration. The whole process is commonly applied in many

big data tools and can be summarized as “reduce-gather-

broadcast”. But “gather-broadcast” is not an efficient way to

redistribute new centroids generated in the previous iteration,

especially when the size of centroids data grows large. The

time complexity of “gather” is at least kdβ where k is the

number of centroids, d is the number of dimensions and β
is the communication time used to send each element in the

centroids (communication startup time α is neglected). Also

the time complexity of “broadcast” is at least kdβ [10][11].

Therefore the time complexity of “gather-broadcast” is about

2kdβ. This can be reduced to kdβ if “allgather” operation

is used instead [12], however none of these tools provides

this pattern of data movement.

Many parallel iterative algorithms use such methods of

data movement to synchronize the dependent application

data and the algorithm execution states between all the par-

allel processes. These operations can be executed multiple

times per iteration, therefore their performance is crucial to

the efficiency of the whole application. We call this type

of data movement “Collective Communication”. Iterative

algorithms which were previously expressed as a chain

of MapReduce jobs can now be re-abstracted as iterations

of high performance collective communication operations.

Such algorithms include k-means clustering, logistic regres-

sion, neural network, principal component analysis, expecta-

tion maximization and support vector machine, all of which

follow the statistical query model [13].

Rather than fixing communication patterns, we decided to

separate this layer out and build a collective communication

abstraction layer. We studied a broad range of communica-

tion patterns including “broadcast”, “allgather”, “allreduce”

in MPI collective communication operations, “shuffle” in

MapReduce, “group-by” in database applications, and “send

228



messages along edges to neighbor vertices” in Pregel. Our

contributions in this paper are as follows: (a) We provide

a common set of data abstractions and related collective

communication operation abstractions. On top of this ab-

straction layer we define the MapCollective programming

model, which allows users to invoke collective communica-

tion operations to synchronize a set of parallel processes. (b)

We implement these ideas in the Harp open source library

[14] as a Hadoop plugin. The word “harp” symbolizes how

parallel processes coordinate through collective communica-

tion operations for efficient data processing, just as strings

in harps can make concordant sound. By plugging Harp

into Hadoop, we can express the MapCollective model in a

MapReduce framework and enable efficient in-memory col-

lective communication between map tasks across a variety

of important data analysis applications.

From here on, Section 2 discusses related work. Sec-

tion 3 shows some application examples as expressed with

collective communication operations. Section 4 describes

the collective communication abstraction layer. Section 5

explains how the MapCollective model works. Section 6

presents the Harp library implementation, and Section 7

shows Harp’s performance through benchmarking on the

applications.

II. RELATED WORK

MapReduce became popular thanks to its simplicity and

scalability, yet is still slow when running iterative algo-

rithms. Frameworks like Twister, HaLoop and Spark solved

this issue by caching intermediate data and developed the

iterative MapReduce model. Another iterative computation

model is the graph model, which abstracts data as vertices

and edges and executes in BSP (Bulk Synchronous Parallel)

style. Pregel and its open source version Giraph follow

this design. By contrast, GraphLab [15] abstracts data as

a “data graph” and uses consistency models to control

vertex value updates. GraphLab was later enhanced with

PowerGraph [16] abstraction to reduce the communication

overhead. This was also used by GraphX [17]. For all

these tools, the collective communication is still hidden

and coupled with the computation flow. Although some

research works [10] [11] [18] [19] try to add or improve

collective communication operations, they are still limited

in operation types and constrained by the computation flow.

As a result, it is necessary to build a separate communication

abstraction layer. With this we can design a programming

model that provides a rich set of communication operations

and grants users flexibility in choosing operations suitable

to their applications.

III. APPLICATION SCENARIOS

In this section we use k-means clustering, force-directed

graph drawing algorithm, and weighted deterministic anneal-

ing SMACOF (WDA-SMACOF), to express the applications

using collective communication operations.

A. K-means Clustering
At the start of k-means clustering, each task loads and

caches a part of the data points while a single task needs

to prepare initial centroids and use “broadcast” operation

to send the data to all other tasks. Later in every iteration,

the tasks do their own calculations and then use “allreduce”

operation to produce the global centroids of this iteration.

B. Force-directed Graph Drawing Algorithm
Fruchterman-Reingold algorithm produces aesthetically

pleasing, two-dimensional pictures of graphs by crafting

simplified simulations of physical systems [20]. Vertices

of the graph act as atomic particles. Initially vertices are

randomly placed in a 2D space. The displacement of each

vertex is generated based on the calculation of attractive and

repulsive forces. Every iteration, the algorithm calculates the

effect of repulsive forces to push them away from each other,

then determines attractive forces to pull them close, limiting

the total displacement by temperature. Both attractive and

repulsive forces are defined as functions of distance between

vertices following Hooke’s Law. The input data of this

algorithm is abstracted as graph data. Since the algorithm

requires calculation of the repulsive forces between every

two vertices in the graph, the communication is more than

just sending messages between neighbor vertices. Instead

we use “allgather” to redistribute the current positions of

the vertices to all the tasks between iterations.

C. WDA-SMACOF
SMACOF (Scaling by MAjorizing a COmplicated Func-

tion) is a gradient descent type of algorithm used for large-

scale multi-dimensional scaling problems. Through iterative

stress majorization, the algorithm minimizes the difference

between distances from points in the original space and their

distances in the new space. WDA-SMACOF improves on

the original SMACOF [21]. It uses deterministic annealing

techniques to avoid local optima during stress majorization,

and employs conjugate gradient for the equation solving

with a non-trivial matrix to keep the time complexity

of the algorithm as O(N2). WDA-SMACOF has nested

iterations. In every outer iteration, the algorithm firstly

does an update on an order N matrix, then performs a

matrix multiplication; the coordination values of points on

the target dimension space is calculated through conjugate

gradient process in inner iterations; the stress value of this

iteration is determined as the final step. We express WDA-

SMACOF with “allgather” and “allreduce”, two operations.

In outer iterations, “allreduce” sums the results from the

stress value calculation. For inner iterations the conjugate

gradient process uses “allgather” to collect the results from

matrix multiplication and “allreduce” for those from inner

product calculations.

229



IV. COLLECTIVE COMMUNICATION ABSTRACTIONS

A. Hierarchical Data Abstractions

Various collective communication patterns have been

observed in existing big data processing tools and the

application examples. To support them, we first abstract

data types in a hierarchy. In Fig. 1, we abstract data

horizontally as arrays, key-values, or vertices, edges and

messages in graphs. Vertically we construct abstractions

from basic types to partitions and tables. Firstly, any data

which can be sent or received is an implementation of

interface Transferrable. At the lowest level, there are

two basic types under this interface: arrays and objects.

Based on the component type of an array, we now have

byte array, int array, long array and double array. To describe

graph data for object type there is vertex object, edge object

and message object; for key-value pairs we use key object

and value object. Next at the middle level, basic types are

wrapped as array partition, key-value partition and graph

data partition (edge partition, vertex partition and message

partition). Notice that we follow the design of Giraph;

edge partition and message partition are built from byte

arrays but not from edge objects or message objects directly.

When reading, bytes are deserialized to an edge object or

a message object. When writing, either the edge object or

the message object is serialized to byte arrays. At the top

level are tables containing several partitions, each with a

unique partition ID. If two partitions with the same ID are

added to the table it will solve the ID conflict by either

combining or merging them into one. Tables on different

processes are associated with each other through table IDs.

Tables sharing the same table ID are considered as one

dataset and a collective communication operation is defined

as redistribution or consolidation of partitions in this dataset.

For example, in Fig. 2, a set of tables associated with ID 0 is

defined on processes from 0 to N . Partitions from 0 to M are

distributed among these tables. A collective communication

operation on Table 0 is to move the partitions between these

tables.

B. Collective Communication Operations

Collective communication operations are defined on top of

the data abstractions. Currently three categories of collective

communication operations are supported:

1) Collective communication adapted from MPI [22]
collective communication operations: e.g. “broadcast”, “all-

gather”, and “allreduce”.

2) Collective communication derived from MapReduce
“shuffle-reduce” operation: e.g. “regroup” operation with

“combine or reduce” support.

3) Collective communication abstracted from graph com-
munication: e.g. “regroup vertices or edges”, “send mes-

sages to vertices” and “send edges to vertices”.

Vertex 
Table

Key-Value 
Partition

Array

Transferrable

Key-ValuesVertices, Edges, 
Messages

Double 
Array

Int
Array

Long 
Array

Array Partition
<Array Type>

Object

Vertex 
Partition

Edge 
Partition

Array Table 
<Array Type>

Message 
Partition

Key-Value 
Table

Byte 
Array

Message 
Table

Edge
Table

Broadcast, Send

Broadcast, AllGather, AllReduce, 
Regroup-(Combine/Reduce), Message-to-Vertex…

Broadcast, Send

Table

Partition

Basic Types

Figure 1. Hierarchical data abstractions

We list several defined operations in Table I. Some

collective communication operations tie to certain data ab-

stractions. For example, “send messages to vertices” has

to be done on graph data. But for other operations, the

boundary is blurred. From application examples, “allgather”

operation is used both on array and vertex tables. Addition-

ally, each collective communication can be implemented in

a rich set of algorithms. We choose candidate algorithms

for optimization based on two criteria: the frequency of

the collective communication and the total data size in the

collective communication. For the operation which most

frequently occurs in the application, we choose the algorithm

with high performance to reduce the cost on application data

synchronization. With different data sizes, some algorithms

are good for small data while others favor large data.

For example, we have two versions of “allreduce”. One

is “bidirectional-exchange” algorithm [12] and another is

“regroup-allgather” algorithm. When the data size is large

Table 0

Partition 0

Table 0

Process 0 Process 1 Process N

Partition 4

Table 0

Partition 
M-1

Partition 1

Collective Communication

Partition 5

Partition 6

Partition M

Partition 3

Partition 2

Figure 2. Tables and partitions in collective communication operations

230



Table I
COLLECTIVE COMMUNICATION OPERATIONS

Operation
Name

Data Abstraction Algorithm
Time
Complexity

broadcast
arrays, key-value
pairs & vertices

chain nβ

allgather
arrays, key-value
pairs & vertices

bucket pnβ

allreduce
arrays, key-value
pairs

bi-directional
exchange

(log2 p)nβ

regroup-
allgather

2nβ

regroup
arrays, key-value
pairs & vertices

point-to-point
direct sending

nβ

send messages
to vertices

messages,
vertices

point-to-point
direct sending

nβ

send edges to
vertices

edges, vertices
point-to-point
direct sending

nβ

Notice that in Column “Time Complexity”, p is the number of
processes, n is the number of input data items per process, β is the
per data item transmission time, communication startup time α is ne-
glected and the time complexity of the “point-to-point direct sending”
algorithm is estimated regardless of potential network conflicts.

and each table has many partitions, “regroup-allgather” is

more suitable because it has less data sending and more

balanced workload per process. But if the table on each

process only has one or a few partitions, “bidirectional-

exchange” is more effective.

V. MAPCOLLECTIVE PROGRAMMING MODEL

Since the communication is hidden in many existing big

data processing tools, even with a collective communication

abstraction layer, the applications still cannot benefit from

the expressiveness of this abstraction. As a solution we

define a MapCollective programming model to enable using

collective communication operations.

A. BSP Style Parallelism

MapCollective follows the BSP style. We consider two

levels of parallelism. At the first level, each parallel com-

ponent is a process where the collective communication

operations happen. The second is the thread level for parallel

processing inside of each process. This is not mandatory in

the model but it can maximize memory sharing and multi-

threading in each process and save the data size in collective

communications. To enable in-memory collective communi-

cations, we need to make every process alive simultaneously.

As a result, instead of dynamic scheduling, we use static

scheduling. When processes are scheduled and launched,

their locations are synchronized between all the processes

for future collective communications.

B. Fault Tolerance

When it comes to fault tolerance, failure detection and

recovery are crucial system features. Currently we have

focused our efforts on failure detection to ensure every

process can report exceptions or faults correctly without

getting hung up. Failure recovery poses a challenge because

the execution flow in the MapCollective model is very

flexible. Currently we do job level failure recovery. Based

on the execution time length of scale, an algorithm with

a large number of iterations can be separated into a small

number of jobs, each of which contains several iterations.

This naturally forms checkpointing between iterations. Since

MapCollective jobs are very efficient on performance, this

method is feasible without generating large overhead. At the

same time, we are investigating task level recovery by re-

synchronizing execution states between new launched tasks

and other old live tasks.

VI. HARP IMPLEMENTATION

We implemented the collective communication abstraction

layer and the MapCollective model in the Harp library. By

plugging it into Hadoop, users can write a MapCollective

job with the support of MapReduce frameworks. Collective

communications are enabled between map tasks.

A. Layered Architecture

The current Harp implementation targets Hadoop 2. Fig.

3 shows how different layers interface with each other in the

architecture. At the bottom level is the MapReduce frame-

work. We extend the original MapReduce framework to

expose the network location of map tasks. In the upper level,

Harp builds collective communication abstractions which

provide collective communication operators, hierarchical

data types of tables and partitions, and the memory alloca-

tion management pool for data caching and reuse. All these

components interface with the MapCollective programming

model. After wrapping, the MapCollective programming

model provides three components to the application level:

a MapCollective programming interface, a set of collective

communication APIs, and data abstractions which can be

used in the programming interface.

MapReduce

Collective Communication Abstractions

MapCollective Programming Model

Applications: K-Means, WDA-SMACOF, Graph-Drawing…

Collective Communication 
Operators

Hierarchical Data Types 
(Tables & Partitions)

Memory Resource 
Pool

Collective 
Communication APIs

Array, Key-Value, Graph 
Data Abstraction

MapCollective
Interface

Task Management

Figure 3. Architecture layers in Harp implementation

231



B. MapCollective Programming Interface

To program in the MapCollective model, users need

to override a method called mapCollective in class

CollectiveMapper which is extended from class

Mapper in the original MapReduce framework. While sim-

ilar, mapCollective method differs from map method

in class Mapper in that it employs KeyValReader
to provide flexibility to users; therefore users can either

read all key-values into the memory and cache them,

or read them part by part to fit the memory constraint.

CollectiveMapper not only provides collective com-

munication operation APIs but also an API called doTasks
to enable users to launch multithread tasks. Given an input

partition list and a Task object with user-defined run
method, the doTasks method can automatically perform

thread level parallelization and return the outputs. See the

code example below:

protected void mapCollective(
KeyValReader reader,Context
context) throws IOException,
InterruptedException {
// Put user code here...
// doTasks(...)
// allreduce(...)

}

VII. EXPERIMENTS

A. Test Environment

We evaluate the performance of Hadoop-Harp on the Big

Red II supercomputer [23]. The tests use the nodes in “cpu”

queue where the maximum number of nodes allowed for job

submission is 128. Each node has 32 processors and 64GB

memory. The nodes are running in Cluster Compatibility

Mode and connected with Cray Gemini interconnect. But

the implementation of communication in Harp is based on

Java socket without optimizations aimed at Cray Gemini

interconnect. Hadoop-2.2.0 and JDK 1.7.0 45 are installed.

Because there is only a small 32GB memory mapped local

/tmp directory on each node, we choose Data Capacitor II

(DC2) to store the data. We group file paths on DC2 into

partition files on HDFS and let each map task read file paths

as key-value pairs.

In all the tests, we deploy one map task on each node

and utilize all 32 CPUs to do multi-threading inside. To

reflect the scalability and the communication overhead, we

calculate the speedup based on the number of nodes but not

the number of CPUs. In JVM options of each map task,

we set both Xmx and Xms to 54000M, NewRatio to 1 and

SurvivorRatio to 98. Because most memory allocation is

cached and reused through the memory resource pool, we

can increase the size of the young generation and leave most

of its space to Eden space.

B. Results on K-means Clustering

We run k-means clustering with two different random

generated data sets. One is clustering 500 million 3D points

into ten thousand clusters, while another is clustering 5

million 3D points into 1 million clusters. In the former, the

input data is about 12GB and the ratio of points to clusters is

50000:1. In the latter case, the input data size is only about

120MB but the ratio is 5:1. Such a ratio is commonly high

in clustering; the low ratio is used in a scenario where the

algorithm tries to do fine-grained clustering as classification

[24]. The baseline test uses 8 nodes, then scales up to 128

nodes. The execution time and speedup are shown in Fig.

4a. Since each point is required to calculate distance with all

the cluster centers, total workload of the two tests is similar.

But due to the cache effect, we see “5 million points and 1

million centroids” is slower than “500 million points and 10

thousand centroids” when the number of nodes is small. As

the number of nodes increases, however, they draw closer to

one another. We assume we have the linear speedup on the

smallest number of nodes that we test. So we consider the

speedup on 8 nodes is 8. The experiments show the speedup

comparison in both test cases is close to linear.

C. Results on Force-directed Graph Drawing Algorithm

This algorithm runs with a graph of 477,111 vertices and

665,599 undirected edges. The graph represents a retweet

network about the U.S. presidential election in 2012 from

Twitter [25]. Although the size of input data is fairly small,

the algorithm is computation intensive. We test the algorithm

on 1 node as the base case and then scale up to 128

nodes. Execution time of 20 iterations and speedup are

shown in Fig. 4b. From 1 node to 16 nodes, we observe

almost linear speedup. The speedup drops smoothly after 32

nodes and then plummets sharply on 128 nodes because the

computation time per iteration slows to around 3 seconds.

D. Results on WDA-SMACOF

The WDA-SMACOF algorithm runs with different prob-

lem sizes including 100K points, 200K, 300K and 400K.

Each point represents a gene sequence in a dataset of

representative 454 pyrosequences from spores of known AM

fungal species [26]. Because the input data is the distance

matrix of points and related weight matrix and V matrix,

the total size of input data is in quadratic growth. It is

about 140GB for the 100K problem, about 560GB for 200K,

1.3TB for 300K and 2.2TB for 400K. Due to memory

limitations, the minimum number of nodes required to run

the application is 8 for the 100K problem, 32 for the 200K,

64 for 300K and 128 for 400K. The execution time and

speedup are seen in Fig. 4c and Fig. 4d. Since we cannot

run each input on a single machine, we choose the minimum

number of nodes to run the job as the base to calculate

parallel efficiency and speedup. In most cases, the efficiency

values are very good. The only point that has low efficiency

232



0
20
40
60
80
100
120
140

0
1000
2000
3000
4000
5000
6000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Number of Nodes
500M points 10K centroids Execution Time
5M points 1M centroids Execution Time
500M points 10K centroids Speedup
5M points 1M centroids Speedup

(a)

0
10
20
30
40
50
60
70
80
90

0
1000
2000
3000
4000
5000
6000
7000
8000

0 20 40 60 80 100 120 140

Speedup

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Number of Nodes

Execution Time Speedup

(b)

0
500

1000
1500
2000
2500
3000
3500
4000

0 20 40 60 80 100 120 140

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
ds

)

Number of Nodes

100K points 200K points 300K points 400K points

(c)

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Sp
ee

du
p

Number of Nodes
100K points 200K points 300K points

(d)

Figure 4. The performance results of the applications (a) execution time and speedup of k-means clustering (b) execution time and speedup of force-directed
graph drawing algorithm (c) execution time of WDA-SMACOF (d) speedup of WDA-SMACOF

is 100K problems on 128 nodes. This is a standard effect

in parallel computing where the small problem size reduces

compute time compared to communication, which in this

case has an overhead of about 40% of total execution time.

VIII. CONCLUSION

We propose to abstract a collective communication layer

in the existing big data processing tools to support communi-

cation optimizations required by the applications. We build

a MapCollective programming model on top of collective

communication abstractions to improve the expressiveness

and performance of big data processing. Harp is an im-

plementation designed in a pluggable way to bridge the

differences between Hadoop ecosystem and HPC system

and bring high performance to the Apache Big Data Stack

through a clear communication abstraction, which did not

exist before in the Hadoop ecosystem. Note that these

ideas will allow simple modifications of Mahout library

that drastically improve its low parallel performance; this

demonstrates the value of building new abstractions into

Hadoop rather than developing a totally new infrastructure

as we did in our prototype Twister system. With three

applications, the experiments show that with Harp we can

scale these applications to 128 nodes with 4096 CPUs

on the Big Red II supercomputer, where the speedup in

most tests is close to linear. Future work will include the

high performance communication libraries developed for

simulation (exascale). We will extend the work on fault

tolerance to evaluate the current best practices in MPI, Spark

and Hadoop. We are working with several application groups

and will extend the data abstractions to include those needed

in pixel and spatial problems.

ACKNOWLEDGMENT

We appreciate the system support offered by FutureGrid

and Big Red II. We gratefully acknowledge support from

National Science Foundation CAREER grant OCI-1149432.

REFERENCES

[1] J. Dean and S. Ghemawat. “Mapreduce: Simplified data processing
on large clusters”. OSDI, 2004.

[2] Apache Hadoop. http://hadoop.apache.org

[3] J. Ekanayake et al. “Twister: A Runtime for iterative MapReduce.
Workshop on MapReduce and its Applications, HPDC, 2010.

[4] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. “Haloop: Efficient
Iterative Data Processing on Large Clusters”. VLDB, 2010.

[5] M. Zaharia et al. “Spark: Cluster Computing with Working Sets”.
HotCloud, 2010.

[6] Grzegorz Malewicz et al. “Pregel: A System for Large-scale Graph
Processing”. SIGMOD. 2010.

[7] Apache Giraph. https://giraph.apache.org/
[8] S. Lloyd. “Least Squares Quantization in PCM”. IEEE Transactions

on Information Theory 28 (2), 1982.
[9] Apache Mahout. https://mahout.apache.org/

[10] J. Qiu, B. Zhang. “Mammoth Data in the Cloud: Clustering Social
Images”. In Clouds, Grids and Big Data, IOS Press, 2013.

[11] B. Zhang, J. Qiu. “High Performance Clustering of Social Images in
a Map-Collective Programming Model. Poster in SoCC, 2013.

[12] E. Chan, M. Heimlich, A. Purkayastha, and R. Geijn. “Collective
communication: theory, practice, and experience”. Concurrency and
Computation: Practice and Experience 19 (13), 2007.

[13] C.-T. Chu et al. “Map-Reduce for Machine Learning on Multicore”.
NIPS, 2006.

[14] Harp. http://salsaproj.indiana.edu/harp/index.html
[15] Y. Low et al. “Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud”. PVLDB, 2012.
[16] J. Gonzalez et al. “PowerGraph: Distributed Graph-Parallel Compu-

tation on Natural Graphs”. OSDI, 2012.
[17] R. Xin et al. “GraphX: A Resilient Distributed Graph System on

Spark”. GRADES, SIGMOD workshop, 2013.
[18] M. Chowdhury et al. “Managing Data Transfers in Computer Clusters

with Orchestra”. SIGCOM, 2011.
[19] T. Gunarathne, J. Qiu and D. Gannon. “Towards a Collective Layer

in the Big Data Stack”. CCGrid, 2014.
[20] T. Fruchterman, M. Reingold. “Graph Drawing by Force-Directed

Placement”, Software Practice & Experience 21 (11), 1991.
[21] Y. Ruan et al. “A Robust and Scalable Solution for Interpolative

Multidimensional Scaling With Weighting”. E-Science, 2013.
[22] MPI Forum. “MPI: A Message Passing Interface”. SC, 1993.
[23] Big Red II. https://kb.iu.edu/data/bcqt.html
[24] G. Fox. “Robust Scalable Visualized Clustering in Vector and non

Vector Semimetric Spaces”. Parallel Processing Letters 23, 2013.
[25] X. Gao and J. Qiu. “Social Media Data Analysis with IndexedHBase

and Iterative MapReduce”. Workshop on Many-Task Computing on
Clouds, Grids, and Supercomputers (MTAGS), SC, 2013.

[26] Y. Ruan et al. “Integration of Clustering and Multidimensional
Scaling to Determine Phylogenetic Trees as Spherical Phylograms
Visualized in 3 Dimensions”. C4Bio, CCGrid worksop, 2014.

233


