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Abstract. Subgraph counting aims to count the number of occurrences of

a subgraph T (aka as a template) in a given graph G. The basic problem
has found applications in diverse domains. The problem is known to be

computationally challenging – the complexity grows both as a function

of T and G. Recent applications have motivated solving such problems
on massive networks with billions of vertices.

In this chapter, we study the subgraph counting problem from a par-
allel computing perspective. We discuss efficient parallel algorithms for

approximately resolving subgraph counting problems by using the color-

coding technique. We then present several system-level strategies to sub-
stantially improve the overall performance of the algorithm in massive

subgraph counting problems. We propose: 1) a novel pipelined Adaptive-

Group communication pattern to improve inter-node scalability, 2) a
fine-grained pipeline design to effectively reduce the memory space of in-

termediate results, 3) partitioning neighbor lists of subgraph vertices to

achieve better thread concurrency and workload balance. Experimenta-
tion on an Intel Xeon E5 cluster shows that our implementation achieves

5x speedup of performance compared to the state-of-the-art work while
reduces the peak memory utilization by a factor of 2 on large templates
of 12 to 15 vertices and input graphs of 2 to 5 billions of edges.

Keywords. Subgraph (Motif) Counting, High performance computing,

Big Data, Approximation algorithms,Irregular networks, Communication

Pattern

1. Introduction

Subgraph analysis in massive graphs is a fundamental task that arises in numer-
ous applications, including social network analysis [1], uncovering network motifs
(repetitive subgraphs) in gene regulatory networks in bioinformatics [2], indexing
graph databases [3], optimizing task scheduling in infrastructure monitoring, and
detecting events in cybersecurity. Many emerging applications often require one
to solve the subgraph counting problem for very large instances.
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Given two graphs—a subgraph T on k vertices (also referred to as a template),
and a graph G on n vertices and m edges as input, some of the commonly studied
questions related to the subgraph analysis include: 1) Subgraph-existence: deter-
mining whether G = (V,E) contains a subgraph that is isomorphic to template
T , 2) Subgraph-counting: counting the number of such subgraphs, 3) Frequent-
subgraphs: finding subgraphs that occur frequently in G, and 4) Graphlet fre-
quency: computing the frequency Distribution (GFD) of a set of templates T ,
i.e. for each template T ∈ T count the number of occurrences of T in in G.
Some of the commonly studied templates are paths and trees, and we focus on
the detection and counting versions of the non-induced subgraph isomorphism
problem for paths and trees (these problems are formally defined in Section 2).
Tree template counting can also be used as a kernel to estimate the GFD in a
graph. For instance, Bressan et al. [4] show that a well-implemented tree template
counting kernel can push the limit of the state-of-the-art GFD in terms of input
graph size and template size. These problems are recognized to be NP-hard even
for very simple templates, and the best algorithms for computing exact counts of
a k-vertices template from a n-vertices graph has a complexity of Ω(nk/2) [5].

This motivates the use of approximation algorithms, and several techniques
have been developed for subgraph counting problems. These have been based on
the idea of fixed parameter tractable algorithms, whose execution time is expo-
nential in the template size k but polynomial in the number of vertices, n—this
is one of the standard approaches for dealing with NP-hard problems (see [6,7]).
Two powerful classes of techniques that have been developed for subgraph count-
ing are: 1) color-coding [8], which was the first fixed parameter technique for
counting paths and trees, with a running time and space O((2e)km) and O(2kn),
respectively, and 2) multilinear detection [9,10], which is based on a reduction
of the subgraph detection problem to detecting multilinear terms in multivariate
polynomials. This approach reduces the time and space to O(2km) and O(k),
respectively. However, finding the actual subgraphs requires additional work [11].

Our focus is on parallel algorithms and implementations for subgraph detec-
tion and counting. Parallel versions of both the color-coding [12,13] and multilin-
ear detection techniques have been developed [14]. Though the multilinear detec-
tion technique has several benefits in terms of time and space over color-coding,
it is still more involved (than color-coding) when it comes to finding the sub-
graph embeddings. Additionally, the color-coding technique has been extended
to subgraphs beyond trees, specifically, those with treewidth more than 1—such
subgraphs are much more complex than trees and can contain cycles [15]. There-
fore, efficient parallelization of the color-coding technique remains a very useful
objective, and will be the focus of our work.

The current parallel algorithms for color-coding have been either implemented
with MapReduce (SAHAD [12]) or with MPI (FASCIA [13]). However, both meth-
ods suffer from significant communication overhead and large memory footprints,
which prevents them from scaling to templates with more than 12 vertices. We fo-
cus on the problem of counting tree templates (referred to as treelets), identify the
bottlenecks of scaling, and design a new approach for parallelizing color-coding.
We aim to address the following computation challenges:
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• Communication: Many graph applications are based on point-to-point com-
munication, having the unavailability of high-level communication abstrac-
tion that is adaptive for irregular graph interactions.

• Load balance: Sparsity of graph leads to load imbalance of computation.
• Memory: High volume of intermediate data, due to large subgraph template

(big model), causes intra-node high peak memory utilization at runtime.

We investigate computing capabilities to run subgraph counting at a very large
scale, and we propose the following solutions:

• Adaptive-Group communication with a data-driven pipeline design to in-
terleave computation with communication.

• Partitioning neighbor list for fine-grained task granularity to alleviate load
imbalance at thread level within a single node.

• Intermediate data partitioning with sliced and overlapped workload in the
pipeline to reduce peak memory utilization.

We compare our results with the state-of-the-art MPI Fascia implementation
[13] and show applicability of the proposed method by counting large treelets (up
to 15 vertices) on massive graphs (up to 5 billion edges and 0.66 billion vertices).

The rest of the chapter is organized as follows. Section 2 introduces the prob-
lem, color-coding algorithm and scaling challenges. Section 3 presents our ap-
proach on Adaptive-Group communication as well as a neighbor list partitioning
technique at thread level. Section 4 contains experimental analysis of our proposed
methods and the performance improvements. Related works and our conclusion
could be found in Section 5 and 6.

2. Background

Let G = (V,E) denote a graph on the set V of nodes and set E of edges. We say
that a graph H = (VH , EH) is a non-induced subgraph of G if VH ⊆ V and EH ⊆
E. We note that there may be other edges in E−EH among the nodes in VH in an
induced embedding. A template graph T = (VT , ET ) is said to be isomorphic to a
non-induced subgraph H = (VH , EH) of G if there exists a bijection f : VT → VH
such that for each edge (u, v) ∈ ET , we have (f(u), f(v)) ∈ EH . In this case, we
also say that H is a non-induced embedding of T .
Subgraph-counting problem. Given a graph G = (V,E) and a template T =
(VT , ET ), our objective is to count the number of non-induced embeddings of T
in G, which is denoted by #emb(T,G).

Given ε, δ ∈ (0, 1), we say that a randomized algorithm A gives an (ε, δ)-
approximation if Pr[|A(T,G)−#emb(T,G)| > ε#emb(T,G)] < δ. In this chapter,
we will focus on obtaining an (ε, δ)-approximation to #emb(T,G).

2.1. The Color-coding Technique

Color-coding is a randomized approximation algorithm, which estimates the num-
ber of tree-like embeddings in O(ckpoly(n)) with a tree size k and a constant c.
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We briefly describe the key ideas of the color-coding technique here, since our
algorithm involves a parallelization of it.

Counting colorful embeddings. The main idea is that if we assign a color col(v) ∈
{1, . . . , k} to each node v ∈ G, “colorful” embeddings, namely those in which each
node has a distinct color, can be counted easily in a bottom-up manner.

For a tree template T = (VT , ET ), let ρ(T ) denote its root, which can be
picked arbitrarily. Then T (v) denote a template T with root v = ρ(T ). Let T ′ and
T ′′ denote the subtrees by cutting edge (ρ(T ), u) from T . We pick ρ(T ′) = ρ(T )
and ρ(T ′′) = u. Let C(v, T, S) denote the number of colorful embeddings of T
with vertex v ∈ VG mapped to the root ρ(T ), and using the color set S, where
|VT | = |S|. Then, we can compute C(v, T, S) using dynamic programming with
the following recurrence.

C(v, T, S) =
1

d

∑
u∈N(v)

∑
S=S1∪S2

C(v, T ′, S1) · C(u, T ′′, S2) (1)

where d accounts for the over-counting, as discussed in [8].
Figure 1 (a) shows how the problem is decomposed into smaller sub-problems.

In this partition process, an arbitrary vertex is picked up as the root which
is marked in red, then one edge of it is removed, splitting tree T into two
small sub-trees. The arrow lines denote these split relationships, with the solid
line pointing to the sub-tree with the root vertex and dotted line to the other.
This process runs recursively until the tree template has only one vertex, T1.
Figure 1 (b) shows an example of the colorful embedding counting process
which demonstrates the calculation on one neighbor of the root vertex. Here,
tree template T5 is split into sub templates T2 and T3, in order to count
C(w1, T5(v1), S), or the number of embeddings of T5(v1) rooted at w1, using
color set S = {red, yellow, blue, green, purple}, we enumerate over all valid com-
bination of sub color sets on T2 and T3. For S1 = {g, p}, S2 = {y, r, b}, we
have C(w1, T2(v1), {g, p}) = 2 and C(w2, T3(v2), {y, r, b}) = 2, and for S1 =
{g, b}, S2 = {y, r, p}, we have C(w1, T2(v1), {g, b}) = 1 , C(w2, T3(v2), {y, r, p}) =
2. As T5 can be constructed by combinations of these sub trees, C(w1, T5(v1), S)
equals to the summation of the multiplication of the count of the sub trees, and
results in 2×2+1×2 = 6. In this example, the combination of two sub-trees of T5
uniquely locates a colorful embedding. But for some templates, some subtrees are
isomorphic to each other when the root is removed. E.g., for T3 in Figure 1 (a), the
same embedding will be over-counted for 2 times in this dynamic programming
process.
Random coloring. The second idea is that if the coloring is done randomly with
k = |VT | colors, there will be a reasonable probability that an embedding is color-
ful, i.e., each of its nodes is marked by a distinct color. Specifically, an embedding
H of T is colorful with probability k!

kk
. Therefore, the expected number of colorful

embeddings is n(T,G) k!
kk

. Alon et al. [8] show that this estimator has bounded
variance, which can be used to efficiently estimate the number of embeddings,
denoted as n(T,G). Algorithm 1 describes the sequential color-coding algorithm.
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Figure 1. An example showing the two main steps of color-coding with tempate T5.

Algorithm 1 Sequential color-coding algorithm.

1: Input: Graph G = (V,E), a template T = (VT , ET ), and parameters ε, δ
2: Output: A (1± ε)- approximation to #emb(T,G) with probability of at least

1− δ
3: Let Niter = O( e

k log(1/δ)
ε2 ) and k = |VT |

4: for j = 1 to Niter do
5: for v ∈ V do
6: Pick a color col(v) ∈ S = {1, . . . , k} uniformly at random
7: end for
8: Partition T into subtrees recursively to form T .
9: for v ∈ V , Ti ∈ T and subset Si ⊆ S, with |Si| = |Ti| do

10: Compute

C(v, Ti, Si) =
1

d

∑
u

∑
C(v, T ′i , S

′
i) · C(u, T ′′i , S

′′
i ), (2)

where Ti is partitioned into trees T ′i and T ′′i in T , and d is the over counting
factor for Ti, as described in [8].

11: end for
12: Compute C(j), the number of colorful embeddings of T in G for the jth

coloring as

C(j) = kk

k!

∑
v∈V C(v, T (ρ), S) (3)

13: end for
14: Partition the Niter estimates C(1), ..., C(Niter) into t = O(log(1/δ)) sets of

equal size. Let Zj be the average of set j. Output the median of Z1, ..., Zt.

Distributed color-coding and challenges. As color-coding runs Niter independent
estimates in the outer loop at line 4 in the sequential Algorithm 1, it is straight-
forward to implement the outer loop at line 4 in a parallel way. However, if a large
dataset cannot fit into the memory of a single node, the algorithm must partition
the dataset over multiple nodes and parallelize the inner loop at line 8 of Algo-
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rithm 1 to exploit computation horsepower from more cluster nodes. Nevertheless,
vertices partitioned on each local node requires count information of their neigh-
bor u located on remote cluster nodes, which brings communication overhead that
compromises scaling efficiency. Algorithm 2 uses a collective all-to-all operation
to communicate count information among processes and updates the counts of
local vertices at line 16. This standard communication pattern ignores the impact
of growing template size, which exponentially increases communication cost and
reduces the parallel scaling efficiency. Moreover, skewed distribution of neighbor
vertices on local cluster nodes will generally cause workload imbalance among
processes and produce a “straggler” to slow down the collective communication
operation. Finally, it requires each local node to hold all the transferred count
information in memory before starting the computation stage on the remote data,
resulting in a high peak memory utilization on a single cluster node and becoming
a bottleneck in scaling out the distributed color-coding algorithm.

3. Scaling Distributed Color-coding

To address the challenges analyzed in Section 2, we propose a novel node-level
communication scheme named Adaptive-Group in Section 3.2, and a fine-grained
thread-level optimization called neighbor list partitioning in Section 3.3. Both of
the approaches are implemented as a subgraph counting application to our open
source project Harp-DAAL [16][17].

3.1. Harp-DAAL

Harp-DAAL is an ongoing effort of running data-intensive workloads on HPC
clusters and becoming a High Performance Computing Enhanced Apache Big
Data Stack (HPC-ABDS). Being extended from Apache Hadoop, Harp-DAAL
provides users of MPI-like programming model besides the default MapReduce
paradigm. Unlike Apache Hadoop, Harp-DAAL utilizes the main memory rather
than the hard disk to store intermediate results, and it implements a variety of
collective communication operations optimized for data-intensive machine learn-
ing workloads [18][19][20]. Furthermore, Harp-DAAL provides hardware-specific
acceleration via an integration of Intel’s Data Analytics and Acceleration Library
(Intel DAAL) [21] for intra-node computation workloads. Intel DAAL is an open
source project, and we contribute the optimization codes of this work as re-usable
kernels of Intel DAAL.

3.2. Adaptive-Group Communication

Adaptive-Group is an interprocess communication scheme based on the concept
of communication group. Given P parallel computing processes, each process p
belongs to a communication group where it has data dependencies, i.e., send-
ing/receiving data, with other processes in the group. In an all-to-all operation,
such as MPI Alltoall, each process p communicates data with all the other pro-
cesses in a collective way, namely all processes are associated to a single com-
munication group with size P . In Adaptive-Group communication, the collective
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Algorithm 2 Distributed color-coding algorithm

1: Input: Graph G(V,E), Template T ,
Processes P , Color number k
δ and ε are parameters that control approximation quality
Output: A (1± ε)- approximation to #emb(T,G) with probability of at least
1− δ

2: G(V,E) is randomly partitioned into P processes
3: T is partitioned into subtemplates Ti ∈ T
4: ρ is the root of T

5: Niter = O( e
k log(1/δ)

ε2 )
6: S = {1, . . . , k} is a color set
7: for it=1 to Niter do . Out-loop iterations
8: for Each process 0 ≤ p ≤ P do . Process-level parallelism
9: Color local graph Gp(V,E)

10: for all Ti ∈ T in reverse order of partitioning do
11: select subset Si ⊆ S, with |Si| = |Ti|
12: for all v ∈ Gp(V,E) do . Thread-level parallelism
13: Compute Cp(v, Ti, Si) from neighbor vertices of v within process

p
14: end for
15: Process p All-to-All exchanges local counts

Cp(, Ti, Si) with other processes
16: for all v ∈ Gp(V,E) do . Thread-level parallelism
17: Update Cp(v, Ti, Si) by computing received

neighbor vertices of v from other processes
18: end for
19: end for
20: end for
21: end for
22: Compute C(j), the number of colorful embeddings of T in G for the jth

coloring as C(j) = kk

k!

∑
v∈V c(v, T (ρ), S)

23: Partition the Niter estimates C(1), ..., C(Niter) into t = O(log(1/δ)) sets of
equal size. Let Zj be the average of set j. Output the median of Z1, ..., Zt.

Figure 2. An example of ring-ordered steps in the Adaptive-Group communication

communication is divided into W steps, where each process p only communicates
with processes belonging to a communication group of size m at each step w.
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The size m and the number of total steps W are both configurable on-the-fly
and adaptive to computation overhead, load balance, and memory utilization of
irregular problems like subgraph counting.

A routing method is required to guarantee that no missing and redundant
data transfer occurs during all the W steps. Figure 2 illustrates such a routing
method, where the all-to-all operation among 5 processes is decoupled into 4
steps, and each process only communicates with two other processes within a
communication group of size 3 at each step. Line 3 to 14 of Algorithm 3 gives out
the pseudo code of Adaptive-Group communication that implements the routing
method in Figure 2. Here the communication is adaptive to the template size
|T |. With a large template size |T |, the algorithm adopts the routing method in
Figure 2 with a communication group size of 3, while it switches to the traditional
all-to-all operation if the template size is small.

Algorithm 3 Adaptive-Group in distributed color-coding

1: Input: p is the current process id P is the total number of processes to com-
municate
k is the number of colors
Gp(V,E) is partition of the input graph at process p
Ti is the ith subtemplate to compute
Si is subset of S = {1, . . . , k} for ith subtemplate
threadIdx is the thread Id in process
Output: Cp(v, Ti, Si) is the updated counts at process p

2: if (|Ti| is large) then . Adaptive to large T
3: for r = p+ 1, p+ 2, . . . , P − 1, 0, . . . , p− 1 do
4: if threadIdx = 0 then . Communication Pipeline
5: Denote Cx,y(v, Ti, Si) as the count value of vertex in process x

requested by process y
6: Compress and send Cp,r(v, Ti, Si) to process r
7: Receive and decompress C2p−r,p(v, Ti, Si) from process 2p− r
8: else . Computation Pipeline
9: for all v ∈ Gp(V,E) do . Thread-level parallelism

10: Update Cp(v, Ti, Si) by computing
received neighbor vertices of v
from process 2p− r − 1

11: end for
12: end if
13: end for
14: else . Adaptive to small Ti
15: Process p All-to-All exchanges local counts

Cp(v, Ti, Si) with other processes
16: for all v ∈ Gp(V,E) do . Thread-level parallelism
17: Update Cp(v, Ti, Si) by computing received

neighbor vertices of v from other processes
18: end for
19: end if
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3.2.1. Pipeline Design

Figure 3. Pipelined Adaptive-Group communication

When adding up all W steps in Adaptive-Group, we apply a pipeline design
shown in Figure 3, which includes a computation pipeline (red) and a communi-
cation pipeline (blue). Given an Adaptive-Group communication in W steps, each
pipeline follows W + 1 stages to finish all the work. The first stage is a cold start,
where no previous received data exists in the computation pipeline and only the
communication pipeline is transferring data. For the following W stage, the work
in the communication pipeline can be interleaved by the work in the computation
pipeline. This interleaving can be achieved by using a multi-threading program-
ming model, where a single thread is in charge of the communication pipeline
and the other threads are assigned to the computation pipeline (see Algorithm 3
line 5 to 13). Since at each stage the computation pipeline relies on the data
received at the previous stage of the communication pipeline, a synchronization
of two pipelines at the end of each stage is required (shown as a dashed line in
Figure 3). The additional performance brought by pipeline depends on the ratio
of overlapping computation and communication in each stage of two pipelines. We
will estimate the bounds of computation and communication in pipeline design
for large templates through an analysis of complexity.

3.2.2. Complexity Analysis

When computing subtree Ti, we estimate the computation complexity on remote
neighbors at step w as:

Compw,p = O

( k

|Ti|

)(|Ti|
|T ′i |

) ∑
v∈Vp

Nr,w (v)

 (4)

where k is the number of colors, |Ti| is the size of subtree Ti in template T , and
T ′i is a subtree partitioned from Ti according to Algorithm 1.
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We divide the neighbors of v into local neighbors Nl(v) and remote neigh-
bors Nr(v). The Nr(v) is made up of neighbors received in each step, Nr(v) =∑W
w=1Nr,w(v). With the assumption of random partitioning G(V,E) by vertices

across P processes,

E[Nr,w(Vp)] = E[
∑
v∈Vp

Nr,w(v)]

=
∑
v∈V

E[Nr,w(v)] Pr[v ∈ Vp]

=
∑

(u,v)∈E

Pr[v ∈ Vp, u ∈ Nr,w(v)] = |E|/P 2 (5)

where |E| is the edge number. Further by applying Chernoff bound, we have
Nr,w(Vp) = Θ(|E|/P 2) with probability at least 1− 1/n2.

Therefore, we get the bound of computation as

Compw,p =

(
k

|Ti|

)(|Ti|
|T ′i |

)
Θ (Nr,w (Vp)) = Θ

((
k

|Ti|

)(|Ti|
|T ′i |

)
|E|/P 2

)
(6)

Similarly, the expectation of peak memory utilization at step w is

PeakMemw,p = O

∑
v∈Vp

[
C (v, Ti) +

∑
u∈Nr,w(v)

C (u, Ti)
]

= O

((
k

|Ti|

)(
|V |/P + |E|/P 2

))
(7)

where C(u, Ti) is the length of array (memory space) that holds the combination
of color counts for each u, and its complexity is bounded by O(

(
k
|Ti|
)
) (refer to

line 8 of Algorithm 1).
The communication complexity at step w by Hockney model [22] is

Comw,p = O

α+ δw,p + β
∑
v∈Vp

∑
u∈Nr,w(v)

C (u, Ti)


= O

(
α+ δw,p + β

(
k

|Ti|

)
|E|/P 2

)
(8)

where α is the latency associated to the operations in step w, β is the data
transfer time per byte, and δw,p is the time spent by process p in waiting for other
processes because of the load imbalance among P processes at step w, which is
bounded by

δw,p = O (Maxq 6=p (Timew−1,q − Timew−1,p))
= O (Maxq 6=p (Timew−1,q)) (9)
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where Timew−1,q is the execution time of process q at step w−1 which is expressed
as

Timew−1,q = Max (Compw−1,q, Comw−1,q) (10)

When it comes to the total complexity of all W steps, we assume a routing
algorithm described in Figure 2 is used, where W = P − 1. We obtain the bound
for computation as

Comppiptotal,p =

W∑
w=1

Compw,p

= Θ

((
k

|Ti|

)(|Ti|
|T ′i |

)
|E| (P − 1) /P 2

)
(11)

While the peak memory utilization is

PeakMempip
total,p = O (Maxw (PeakMemw,p))

= O

((
k

|Ti|

)(
|V |/P + |E|/P 2

))
(12)

The total communication overhead in the pipeline design of all steps W is calcu-
lated by

Compip
total,p = Comw=1,p +

W∑
w=2

(1− ρw)Comw,p (13)

where ρw is defined as the ratio of effectively overlapped communication time by
computation in a pipeline step w

ρw =
Min (Compw−1,p, Comw,p)

Comw,p
, (w > 1) (14)

As the computation per neighbor u ∈ Nr,w(v) for Ti is bounded by
(
k
|Ti|
)(|Ti|
|T ′

i |
)

and

communication data volume per u bounded by its memory space complexity
(
k
|Ti|
)
,

Compw,p increases faster than Comw,p with respect to the template size |Ti|.
Therefore, for large templates, the computation term Compw,p is generally larger
than the communication overhead Comw,p at each step, and we have ρw ≈ 1.
Equation 13 is bounded by

ComlargeT,pip
total,p = O (Comw=1,p)

= O

(
α+ δw=1,p +

β

P

(
k

|Ti|

)
|E|/P 2

)
(15)
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With large |Ti|, we have

δw=1,p = O (Maxq 6=p (Compw=1,q))

= O

(
1

P 2

(
k

|Ti|

)(|Ti|
|T ′i |

)
|E|
)

(16)

which is inversely proportional to P 2. The third term in Equation 15 is also
inversely proportional to P . Therefore ComlargeT,pip

total,p shall decrease with an in-
creasing P , which implies that the algorithm is scalable with large templates by
bounding the communication overhead.

For small templates, there is usually no sufficient workload to interleave com-
munication overhead, which gives a relatively small ρw value in Equation 13
and compromises the effectiveness of pipeline interleaving. Even worse, as the
transferred data at each step w is small, it cannot effectively leverage the band-
width of interconnect when compared to the all-to-all operation. In such cases,
the Adaptive-Group is able to switch back to all-to-all mode and ensure a good
performance.

3.2.3. Implementation

We implement the pipelined Adaptive-Group communication with Harp, where
a mapper plays the role of a parallel process, and mappers can complete various
collective communications that are optimized for big data problems. In imple-
mentation like MPI Alltoall, each process p out of P prepares a slot Slot(q) for
any other process q that it communicates with, and pushes data required by q to
Slot(q) prior to the collective communication. The ID label of sender and receiver
are attached to the slots in a static way, and the program must choose a type of
collective operation (e.g., all-to-all, allgather) in the compilation stage.

In contrast, each Harp mapper keeps a sender queue and a receiving queue,
and each data packet is labeled by a meta ID as shown in Figure 4. For Adaptive-
Group, the meta ID for each packet consists of three parts (bit-wise packed to
a 32-bit integer): the sender mapper ID, the receiver mapper ID, and the offset
position in the sending queue. A user-defined routing algorithm then decodes the
meta ID and delivers the packet in a dynamically-configurable way. The routing
algorithm is able to detect template and workload sizes, and switch on-the-fly
between pipeline and all-to-all modes.

3.3. Fine-grained Load Balance

For an input graph with a high skewness in out-degree of vertex, color-coding
imposes a load imbalance issue at the thread-level. In Algorithm 1 and 2, the task
of computing the counts of a certain vertex by looping all entries of its neighbor
list is assigned to a single thread. If the max degree of an input graph is several
orders of magnitude larger than the average degree, one thread may take orders
of magnitude more workload than average. For large templates, this imbalance is
amplified by the exponential increase of computing counts for a single vertex in
line 9 of Algorithm 1.
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Figure 4. Adaptive-Group tags each data packet with a meta ID, which is used by a routing

algorithm for data transfer. Both the meta ID and the routing algorithm are re-configurable
on-the-fly

To address the issue of workload skewness, we propose a neighbor list parti-
tioning technique, which is implemented by the multi-thread programming library
OpenMP. Algorithm 4 illustrates the process of creating the fine-grained tasks
assigned to threads. Given maximal task size s, the process detects the neighbor
list length n of a vertex v. If n is beyond s, it extracts a sub-list sized s out of
the n neighbors and creates a task including neighbors in the sub-list associated
to vertex v. The same process applies to the remaining part of the truncated list
until all neighbors are partitioned. If n is already smaller than s, it creates a task
with all the n neighbors associated to vertex v.

The neighbor list partitioning ensures that no extremely large task is assigned
to a thread by bounding the task size to s, which improves the workload balance at
thread-level. However, it comes with a race condition if two threads are updating
tasks associated to the same vertex v. We use atomic operations of OpenMP
to resolve the race condition and shuffle the created task queue at line 17 of
Algorithm 4 to mitigate the chance of conflict.

4. Evaluation of Performance and Analysis of Results

4.1. Experimentation Setup

We conduct a set of experiments by implementing 4 code versions of distributed
color-coding algorithm with Harp-DAAL: Naive, Pipeline, Adaptive and Adap-
tiveLB (Load Balance). Table 1 lists individual optimization technique for exper-
iments. They aim to systematically investigate the impact of each optimization,
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Algorithm 4 Create parallel tasks via neighbor list partitioning

1: Input: s is user-defined maximal task size
V is local vertices
Nv is neighbor list of v ∈ V
n is the number of neighbors
l is the length of new task
pos is the offset of sub-list
Output: Q stores created tasks

2: for all v ∈ V do
3: if |Nv| < s then
4: Q add task(v, Nv)
5: else
6: n← |Nv|
7: pos← 0
8: while n > 0 do
9: l←Min(n, s)

10: Q add Task(v, Nv(pos : pos+ l))
11: pos+ = l
12: n− = l
13: end while
14: end if
15: end for
16: shuffle tasks in Q

which addresses the sparse irregularity, the low computation to communication
ratio or the high memory footprint issues of subgraph counting.

Table 1. Harp-DAAL implementations in experiments

Implementation Communication
Mode

Adaptive Switch Neighbor list
partitioning

Naive all-to-all Off Off

Pipeline Pipeline Off Off

Adaptive all-to-all/pipeline On Off

AdaptiveLB all-to-all/pipeline On On

Table 2. Datasets in experiments (K=103, M=106,B=109)

Data Vertices Edges Avg Deg Max Deg Source Abbreviation

Miami 2.1M 51M 49 9868 social network MI

Orkut 3M 230M 76 33K social network OR

NYC 18M 480M 54 429 social network NY

Twitter 44M 2B 50 3M Twitter users TW

Sk-2005 50M 3.8B 73 8M UbiCrawler SK

Friendster 66M 5B 57 5214 social network FR

RMAT-250M(k=1,3,8) 5M 250M 100,102,217 170,40K,433K PaRMAT R250K1,3,8

RMAT-500M(k=3) 5M 500M 202 75K PaRMAT R500K3
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Figure 5. Tree templates used in experimentation with growing sizes and different shapes

Table 3. Computation intensity of templates

Template Memory
Complexity

Computation
Complexity

Computation
Intensity

u3-1 3 6 2

u5-2 25 70 2.8

u7-2 147 434 2.9

u10-2 1047 5610 5.3

u12-1 4082 24552 6.0

u12-2 3135 38016 12

u13 4823 109603 22

u14 7371 242515 32

u15-1 12383 753375 60

u15-2 15773 617820 39

We use synthetic and real datasets in our experiments which are summarized
in Table 2. Miami, Orkut [23][24][25], Twitter [26], SK-2005 [27], and Friend-
ster [24] are datasets generated by real applications. RMAT synthetic datasets are
generated by the RMAT model [28] by specifying the size and skewness. Specify-
ing a higher skewness generates a highly imbalanced distribution of out-degree for
input graph datasets. Therefore, we can use different skewness of RMAT datasets
to study the impact of unbalanced workload on the performance. The different
sizes and structures of the tree templates used in the experiments are shown in
Figure 5, where templates from u3-1 to u12-2 are collected from [13], while u13
to u15 are the largest tree subgraphs being tested to date.

We observe that the size and shape of sub-templates affect the ratio of com-
putation and communication in our experiments. This corresponds to code line 8
of Algorithm 1, where each sub-template Ti is partitioned into trees T ′i and T ′′i .
The space complexity for each neighbor u ∈ N(v) is bounded by

(
k
|Ti|
)

when com-

puting sub-template Ti, and is proportional to the communication data volume.
The computation, which depends on the shape of the template, is bounded by(
k
|Ti|
)(|Ti|
|T ′

i |
)
. In Table 3, the memory space complexity is denoted as

∑
i

(
k
|Ti|
)
, and

the computation complexity is
∑
i

(
k
|Ti|
)(|Ti|
|T ′

i |
)
. In this chapter, we define the com-

putation intensity as the ratio of computation versus communication (or space)
for a template in Figure 5. For example, the computation intensity generally in-
creases along with the template size from u3-1 to u15-2. However, for the same
template size, template u12-2 has a computation intensity of 12 while u12-1 only
has 6. We will use these definitions and refer to their values when analyzing the
experiment results in the rest of sections.
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All experiments run on an Intel Xeon E5 cluster with 25 nodes. Each node
is equipped with two sockets of Xeon E5 2670v3 (2×12 cores), and 120 GB of
DDR4 memory. We use all 48 threads by default in our tests, and InfiniBand is
enabled in either Harp or the MPI communication library. Our Harp-DAAL codes
are compiled by JDK 8.0 and Intel ICC Compiler 2016 as recommended by Intel.
The MPI-Fascia [13] codes are compiled by OpenMPI 1.8.1 as recommended by
its developers.

4.2. Scaling by Adaptive-Group Communication

Comp
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Comm
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Figure 6. Scaling up template sizes on dataset R500K3 for Harp-DAAL Naive implementation

from 4 cluster nodes to 8 cluster nodes

We first conduct a baseline test with the naive implementation of distributed
color-coding. When the subgraph template size is scaled up as shown in Figure 6,
we have the following observations: 1) For small template u5-2, computation de-
creases by 2x when scaling from 4 to 8 nodes while communication only increases
by 13%. 2) For large template u12-2, doubling cluster nodes only reduces com-
putation time by 1.5x but communication grows by 5x. It implies that the all-to-
all communication within the Naive implementation does not scale well on large
templates.

To clarify the effectiveness of the Harp-DAAL Pipeline on large templates,
Figure 7 compares strong scaling speedup, total execution time, and ratio of
communication/computation time between the Naive and Pipeline implementa-
tion versions on Dataset R500K3, which has skewness similar to real application
datasets such as Orkut. For template u10-2, Harp-DAAL Pipeline only slightly
outperforms Harp-DAAL Naive in terms of speedup and total execution time.
However, for u12-2, this performance gap increases to 2.3x (8 nodes) and 2.7x (10
nodes) in execution time, and the speedup is significantly improved starting from
8 nodes. The result is consistent with Table 3, where u12-2 has 2 times higher
computation intensity than u10-2, which provides the pipeline design of sufficient
workload to interleave the communication overhead. The ratio charts of Figure 7
also confirm this result that Harp-DAAL Pipeline has more than 65% of com-
putation on 8 and 10 nodes, while the computation ratio for Harp-DAAL Naive
is below 50% when scaling on 8 and 10 nodes. Although template u12-1 has the
same size as template u12-2, it only has half of the computation intensity as shown
in Table 3. According to Equation 13, the low computation intensity on u12-1
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Figure 7. Strong scaling tests on dataset R500K3 from 4 to 10 cluster nodes with large templates
(u10-2, u12-1, u12-2). First row gives the speedup starting from 4 cluster nodes since a single

node cannot hold the dataset; the second row compares the total execution time from two

implementations; the third row is the ratio of compute/communicate time in the total execution
time.

reduces the overlapping ratio ρ, and we find in Figure 8 that Harp-DAAL Pipeline
has less than 10% of overlapping ratio for u12-1, while u12-2 keeps around 30%
when scaling up to 10 cluster nodes.

For small templates similar to u3-1 and u5-2 which have low computation in-
tensities, we shall examine the effectiveness of adaptability in Harp-DAAL Adap-
tive, where the code switches to all-to-all mode. In Figure 9, we did the strong
scaling tests with small templates u3-1 and u5-2. Results show that when com-
pared to Harp-DAAL Pipeline, Harp-DAAL Adaptive has a better speedup for
tests of both u3-1 and u5-2 on three large datasets: Twitter, Sk-2005, and Friend-
ster. Also, the poor performance of Harp-DAAL Pipeline is due to the low over-
lapping ratio in Figure 8 for Twitter, Sk-2005, and Friendster, where ρ drops to
near zero quickly after scaling to more than 15 nodes.

In addition to strong scaling, we present weak scaling tests in Figure 10 for
template u12-2. We generate a group of RMAT datasets with skewness 3 and
an increasing number of vertices and edges proportional to the running cluster
nodes. By fixing the workload on each cluster node, the weak scaling on the
Harp-DAAL Pipeline reflects the additional communication overhead when more
cluster nodes are used. For the Harp-DAAL Pipeline, execution time grows only
by 20% with cluster nodes growing by 2 (from 4 nodes to 8 nodes). From the
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Figure 9. Strong scaling tests on large dataset Twitter, SK-2005, Friendster from 10 cluster

nodes to 25 cluster nodes with small templates (u3-1, u5-2). Harp-DAAL Adaptive switches to
all-to-all mode and outperforms pipeline.

ratio chart in Figure 10, it is also clear that the Naive implementation has its

communication ratio increased to more than 50% by using 8 cluster nodes while

the communication ratio of Pipeline implementation stays under 40%.
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Figure 11. Execution details on a single Xeon E5 node (x2 sockets, and a total of 24 physical
cores). The default thread number in test is 48 and partitioned neighbor list is 50.

4.3. Fine-grained Load Balance

Although Adaptive-Group communication and pipeline design mitigate the node-
level load imbalance caused by skewness of neighbor list length for each vertex
in input graph, it can not resolve fine-grained workload imbalance at thread-
level inside a node. By applying our neighbor list partitioning technique, we com-
pare the performance of Harp-DAAL AdaptiveLB with Harp-DAAL Adaptive on
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datasets with different skewness. In Figure 11, we first compare the datasets with
increasing skewness shown in Table 2. With R250K1 and MI having small skew-
ness, the neighbor list partitioning barely gains any advantage, and its benefit
starts to appear from dataset OR by 2x improvement of the execution time. For a
dataset with high skewness such as R250K8 with u12-2 template, this acceleration
achieves up to 9x the execution time as shown in Figure 11.

When scaling threads from 6 to 48, for dataset MI having small skewness, the
execution time does not improve much. For R250K8, Harp-DAAL AdaptiveLB
maintains a good performance compared to Naive implementation. In particu-
lar, the thread-level performance of Harp-DAAL Naive drops down after using
more than physical core number (24) of threads, which implies a suffering from
hyper threading. However, Harp-DAAL AdaptiveLB is able to keep the perfor-
mance unaffected by hyper threading. To further justify the thread efficiency of
Harp-DAAL AdaptiveLB, we measure the thread concurrency by VTune. The
histograms show the distribution of execution time by the different numbers of
concurrently running threads. For dataset MI, the number of average concurrent
threads of Harp-DAAL Naive and AdaptiveLB are close (22 versus 28) because the
dataset MI does not have severe load imbalance caused by skewness. For dataset
R250K8, the number of average concurrent threads of Harp-DAAL AdaptiveLB
outperforms that of Harp-DAAL Naive by around 2x (40 versus 18).

Finally, we study the granularity of task size and how it affects partitioning of
the neighbor list. In Algorithm 4, each task of updating neighbor list is bounded
by a selected size s. If s is too small, there will be a substantial number of created
tasks, which adds additional thread scheduling and synchronization overhead. If
s is too large, it can not fully exploit the benefits of partitioning neighbor list.
There exists a range of task granularity which can be observed in the experiments
on R250K3 and R250K8. To fully leverage the neighbor list partitioning, a task
size between 40 and 60 gives better performance than the other values.

4.4. Peak Memory Utilization
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Figure 12. Peak memory utilization for Harp-DAAL Naive and Harp-DAAL Adaptive on dataset

R500K3 with templates u10-2,u12-1, u12-2 from 4 to 10 nodes

Adaptive-Group communication and pipeline design also reduce the peak
memory utilization at each node. According to Equation 12, peak memory utiliza-
tion depends on two terms: the C(v, T ) from local vertices Vp and C(u, T ) from
remote neighbors u ∈ Nr,w(v). When total |V | of dataset is fixed, |Vp| decreases
with increasing process number P and thus reduces the first peak memory term.
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The second term associated with u at step w is also decreasing along with P
because more steps (W = P −1) leads to small data volume involved in each step.
In Figure 12, we observe this reduction of peak memory utilization along with the
growing number of cluster nodes from 4 to 10. Compared to Harp-DAAL Naive,
Harp-DAAL Pipeline reduces the peak memory utilization by 2x on 4 nodes, and
this saving grows to around 5x for large templates u10-2, u12-1, and u12-2.

4.5. Overall Performance
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Figure 13. Overall performance of Harp-DAAL AdaptiveLB vs. MPI-Fascia with increasing tem-

plate sizes from u3-1 to u15-2

Figure 13 shows a comparison of Harp-DAAL AdaptiveLB versus MPI-Fasica
in total execution time with growing templates on Twitter dataset. For small
templates u3-1, u5-2, and u7-2, Harp-DAAL AdaptiveLB performs comparably or
slightly better. Small templates can not fully exploit the efficiency of pipeline due
to low computation intensity. For large template u10-2, Harp-DAAL AdaptiveLB
achieves 2x better performance than MPI-Fascia, and it continues to gain by 5x
better performance for u12-2. Beyond u12-2, Harp-DAAL AdaptiveLB can still
scale templates up to u15-2. MPI-Fascia can not run templates larger than u12-2
on Twitter because of high peak memory utilization over the 120 GB memory
limitation per node.

Figures 14 and 15 further compare the strong scaling results between Harp-
DAAL AdaptiveLB and MPI-Fascia. Scaling from 8 nodes to 16 nodes, Harp-
DAAL AdaptiveLB achieves better speedup than MPI-Fascia for templates grow-
ing from u3-1 to u12-2. MPI-Fascia cannot run Twitter on 8 nodes due to its high
peak memory utilization. The ratio charts in Figure 14 give more details about
the speedup, where MPI-Fascia has a comparable communication overhead ratio
in execution time for small templates u3-1 and u5-2; however, the communication
ratio increases to 80% at template u10-2 while Harp-DAAL AdaptiveLB keeps
communication ratio around 50%. At template u12-2, Harp-DAAL AdaptiveLB
further reduces the communication overhead to around 40% because the adaptive-
group and pipeline favors large templates with high computation intensity.

5. Related Work

Subgraphs of size k with an independent set of size s can be counted in time
roughly O(nk−spoly(n)) through matrix multiplication based methods [5,29].
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Figure 14. The ratio of computation versus communication in total execution time for Harp–
DAAL AdaptiveLB and MPI-Fascia
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Figure 15. Strong scaling of Harp-DAAL AdaptiveLB vs. MPI-Fascia on Twitter with template

sizes from u3-1 to u12-2

There is substantial work on parallelizing the color-coding technique. ParSE[30]
is the first distributed algorithm based on color-coding that scales to graphs with
millions of vertices with tree-like template size up to 10 and hour-level execu-
tion time . SAHAD [12] expands this algorithm to labeled templates of up to
12 vertices on a graph with 9 million of vertices within less than an hour by
using a Hadoop-based implementation. FASCIA [31,32,13] is the state-of-the-
art color-coding treelet counting tool. By highly optimized data structure and
MPI+OpenMP implementation, it supports tree template of size up to 10 ver-
tices in billion-edge networks in a few minutes. Recent work [15] also explores
the topic of a more complex template with tree width 2, which scales up to 10
vertices for graphs of up to 2M vertices. The original color-coding technique has
been extended in various ways, e.g., a derandomized version [33], and to other
kinds of subgraphs.

6. Conclusion

Subgraph counting is a NP-hard problem with many important applications on
large networks. We propose a novel pipelined communication scheme for finding
and counting large tree templates. The proposed approach simultaneously ad-
dresses the sparse irregularity, the low computation to communication ratio and
high memory footprint, which are difficult issues for scaling of complex graph
algorithms. The methods are aimed at large subgraph cases and use approaches
that make the method effective as graph size, subgraph size, and parallelism in-
crease. Our implementation leverages the Harp-DAAL framework adaptively and
improves the scalability by switching the communication modes based on the size
of subgraph templates. Fine-grained load balancing is achieved at runtime with
thread level parallelism. We demonstrate that our proposed approach is particu-
larly effective on irregular subgraph counting problems and problems with large
subgraph templates. For example, it can scale up to the template size of 15 vertices
on Twitter datasets (half a billion vertices and 2 billion edges) while achieving 5x
speedup over the state-of-art MPI solution. For datasets with high skewness, the
performance improves up to 9x in execution time. The peak memory utilization
is reduced by a factor of 2 on large templates (12 to 15 vertices) compared to
existing work. Another successful application has templates of 12 vertices and a
massive input Friendster graph with 0.66 billion vertices and 5 billion edges. All
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experiments ran on a 25 node cluster of Intel Xeon (Haswell 24 core) processors.
Our source code of subgraph counting is available in the public github domain of
Harp project[17].

In future work, we can apply this Harp-DAAL subgraph counting approach to
other data-intensive irregular graph applications such as random subgraphs and
obtain scalable solutions to the computational, communication and load balancing
challenges.
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