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Many scientific problems depend on the ability to analyze and compute on large amounts of data. This 
analysis often does not scale well, i.e. its effectiveness is hampered by the increasing volume, variety and 
rate of change (velocity) of big data. There is a need to integrate features of traditional high-performance 
computing, such as scientific libraries, communication and resource management middleware, with the rich 
set of capabilities found in the commercial Big Data ecosystem, resulting in an integrated system generi- 
cally called high-performance big data system (HPBDS). Our proposed preliminary implementation of the 
HPBDS – includes many important software systems such as Hadoop available from the Apache open source 
community and thus referred to as High-Performance Computing-Big Data Stack (HPC–ABDS) – has two 
fundamental building blocks: (i) Middleware for Data-Intensive Analytics and Science (MIDAS) that will 
enable scalable applications with the performance of HPC (High Performance Computing) and the rich 
functionality of the commodity Apache Big Data Stack. (ii) The second building block will design and imple- 
ment a set of cross-cutting high-performance data-analysis libraries SPIDAL (Scalable Parallel Interopera- 
ble Data Analytics Library), which will support new programming and execution models for data-intensive 
analysis in a wide range of science and engineering applications. These libraries will be implemented to be 
scalable and interoperable across a range of computing systems including clouds, clusters and supercomput- 
ers. The project libraries will have the same beneficial impact on data analytics that scientific libraries such 
as PETSc, MPI and SCALAPACK have had for supercomputer simulations. In this paper, we study many 
Big Data applications from a variety of research and commercial areas and suggest a set of characteristic 
features and possible kernel benchmarks that stress those features for data analytics. We draw conclusions 
for the hardware and software architectures that are suggested by this analysis. 

General Terms: Big Data, HPC, Apache Hadoop 

1. INTRODUCTION
The growing importance of data in many fields including physical and biological sci- 
ences, and the ability to derive insight and knowledge from increasing volumes of 
com- plex data, points to the importance of advanced analytics. Analytics needs to be 
able to utilize the full range of available infrastructure, however, the coupling 
between tools, analytic engines and infrastructure is often rigid, thus it is often 
difficult to employ existing solutions for contemporary environments that they were 
not natively or origi- nally designed for. Further, many tools were developed at a time 
when parallelism was not essential. In addition, interoperability at multiple levels 
remains elusive, as well as difficult, and scalable yet general-purpose and broadly 
applicable solutions in the form of analytic libraries and abstractions are noticeable 
by their absence. 
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The importance of advanced analytics to derive insight and knowledge from increas- 
ing volumes of complex data will continue to grow. The enterprise community have 
made impressive gains and seem to have converged around the Apache stack, a dis- 
tinctive feature is the existence of many implementations of the specific components of 
the Apache stack, providing sufficient richness in the trade-off between performance 
and capability. In contrast, within the scientific computing community, progress has 
been reliant either on long-term foundational advances or short-term hardware fixes. 
as opposed to integrated approaches that marry the relative technical strengths of the 
two communities yet deliver these as implementations usable on high performance and 
distributed computing HPDC infrastructure such as XSEDE, OSG and other domain- 
specific infrastructure. In both domains, scalable yet general-purpose and broadly ap- 
plicable solutions in the form of analytic libraries and abstractions are noticeable by 
their absence. 

To remedy this major gap and proffer an integrated solution that brings the best of 
recent advances to the service of extreme-scale science requirements on current and 
future science production platforms, we are developing HPC-ABDS – a first imple- 
mentation of a high-performance Big Data stack (HPBDS) that integrates the best of 
the Apache developments and HPC capabilities. HPC-ABDS will utilize and expose 
the integrated relative technical strengths of the two hitherto disjoint approaches and 
communities, yet it will focus on delivering these as production grade implementa- 
tions that will bring the best-of-both to shared-infrastructure – such as NSF’s XSEDE, 
DOE’s leadership machine, OSG and other domain-specific infrastructure, as well as 
the software developments underway as part of the SI2 software program. HPC-ABDS 
will translate these applications characteristics, infrastructural requirements and ex- 
isting capabilities into well-defined and implemented building blocks. 

Application Layer 
Community 

and 
Exemplars 

Remaining Apache Big 
Data stack 

integrated without Message 

Analytics Libraries 

HPC-ABDS MapReduce 

Scalable Parallel 
Interoperable 

Data Analytics 
Libraries 
(SPIDAL) 

need for HP 
enhancements 

(SQL-engines, Storm, 
Impala, Hive, Shark) 

Passing Classic 
MapReduce Search Iterative 

MapReduce 
Iterative 
Giraph 

Programming 
Models 

Middleware 
for Data- 
Intensive 

Analytics and 
Science 
(MIDAS) 

Fig. 1.   Key components of integrated HPBDS stack. Many capabilities unaffected by integration are not 
shown  explicitly 

The key components of such an integrated platform are shown in Fig. 1. The aim of 
HPC-ABDS is to aim for the performance of HPC and the breadth and productivity of 
ABDS. The resultant integrated architecture is targeted at both production high-end 
computing platforms (such as leadership machines and XSEDE), as well as (commer- 
cial) cloud computing. As part of HPC-ABDS, we propose two fundamental building 
blocks, Middleware for Data-Intensive Analytics and Science (MIDAS) and the Scal- 
able Parallel Interoperable Data Analytics Library (SPIDAL). 



The high-performance community has prospered thanks to libraries like MPI, 
PETSc and SCALAPACK; SPIDAL brings this concept to data-intensive applications. 
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SPIDAL Parallel Analytics Libraries will capture system abstractions and expose ap- 
plication requirements and MIDAS the middleware upon which to build such libraries 
that are interoperable yet high-performance, SPIDAL will enable interoperable high 
performance data analytics and is based upon a careful analysis of architectures, tools 
and application characteristics/requirements. Although built from many existing com- 
ponents and capabilities, MIDAS is conceptualized and designed from first-principles 
to ensure our productivity, interoperability and performance goals. 

In earlier work [Jha et al. 2014b], we have discussed the need for merging the two 
“common” stacks. In addition to a qualitative motivation, Ref [Jha et al. 2014b] pro- 
vided a quantitative analysis of the type of abstractions and support required to enable 
a successful hybrid stack. In this paper, we will move from a general motivation of the 
need of a hybrid approach, to a discussion of the design philosophy & objectives of a 
specific implementation of HPC-ABDS, which serves as a first prototype towards a gen- 
eral purpose, interoperable high-performance big data stack for to support analytics on 
high-end clusters, clouds and supercomputers. 

2. SOURCES OF INFORMATION
In discussing the structure of Big Data applications, let us first examine the inevitably 
incomplete input that we used to do our analysis. We have gained quite a bit of experi- 
ence from our research over the years, but 3 explicit sources that we used were a recent 
use case survey by NIST from Fall 2013 [NIST 2013a]; a survey of data intensive re- 
search applications by Jha et al. [Jha et al. 2014a, 2013]; and a study of members of 
data analytics libraries including R [R Project 2012], Mahout [Apache Mahout 2012] 
and MLLib [MLLib 2014]. Following is a summary of the first two sources. 

The NIST Big Data Public Working Group (NBD-PWG) was launched in June 2013 
with a set of working groups covering Big Data Definitions, Taxonomies, Require- 
ments, Security and Privacy Requirements, Reference Architectures White Paper Sur- 
vey, Reference Architectures, Security and Privacy Reference Architectures and Big 
Data Technology Roadmap. The Requirements working group gathered 51 use cases 
from a public call and then analyzed them in terms of requirements of a reference 
architecture [NIST 2013b]. Here we will strive to identify common patterns and char- 
acteristics, which can be used to guide and evaluate Big Data hardware and software. 
The 51 use cases are organized into nine broad areas with the number of associated use 
cases in parentheses: Government Operation (4), Commercial (8), Defense (3), Health- 
care and Life Sciences (10), Deep Learning and Social Media (6), The Ecosystem for 
Research (4), Astronomy and Physics (5); Earth, Environmental and Polar Science (10) 
and Energy (1). 

Note that the majority of use cases come from research applications, although com- 
mercial, defense and government operations have some coverage. A template was pre- 
pared by the Requirements working group, which allowed experts to categorize each 
use case by 26 features: 

Use case Actors/Stakeholders and their roles and responsibilities; use case goals 
and description. Specification of current analysis covering compute system, storage, 
networking and software. Characteristics of use case Big Data with Data Source 
(distributed/centralized), Volume (size), Velocity (e.g. real time), Variety (multiple 
datasets, mashup), Variability (rate of change). The so-called Big Data Science (collec- 
tion, curation, analysis) with Veracity (Robustness Issues, semantics),  Visualization, Data 
Quality (syntax), Data Types and Data Analytics. These detailed specifications were 
complemented by broad comments including Big Data Specific Challenges (Gaps), 
Mobility issues, Security and Privacy Requirements and identification of issues for 
generalizing this use case. 



1:4 S Jha et al. 

Table I. What is Parallelism Over for NIST Use Cases 
General Class Examples 
People Users (but see below) or Subjects of application and often both 
Decision makers Researchers or doctors (users of application) 
Items Experimental  observations 

Contents of online store 
Images or Electronic Information nuggets 
EMR: Electronic Medical Records (often similar to people parallelism) 
Protein or Gene Sequences 
Material properties, Manufactured Object specifications, etc., in custom 
dataset 

Modeled entities Vehicles and people 
Sensors Internet of Things 
Events Detected anomalies in telescope, credit card or atmospheric data 
Graph Nodes RDF databases 
Regular Nodes Simple nodes as in a learning network 
Information Units Tweets, Blogs, Documents, Web Pages, etc. and characters/words in them 
Files or data To be backed up, moved or assigned metadata 
Particles/cells/mesh points Used in parallel simulations 

The complete set of 51 responses in addition to a summary from the working group 
of applications, current status and futures as well as extracted requirements can be 
found in [NIST 2013b]. They are summarized in the Appendix which also gives 20 
other use cases coming from the NBD-PWG which do not have the detailed 26 fea- 
ture template recorded. These 20 cover enterprise data applications and security and 
privacy. 

2.1. Properties of the 51 NIST Use Cases 
[Fox and Luckow 2014] summarize the characteristics of the 51 use cases, which we 
will combine with other input for the Ogres. Note that Big Data and parallel pro- 
gramming are intrinsically linked as any Big Data analysis is inevitably processed 
in parallel. Parallel computing is almost always implemented by dividing the data be- 
tween processors (data decomposition); the richness here is illustrated in Table I which 
lists the members of space that is decomposed for different use cases; of course these 
sources of parallelism are broadly applicable outside the 51 use cases they were ex- 
tracted from. In Table II, we identify use case features for 15 use cases and map these 
to Ogre facets. The second column maps to the use case that illustrate this feature; 
note these are not exclusive so any one use case will illustrate many features. 

For commonly used machine learning applications, there is an interesting distinction 
between what is termed Local (LML) or Global machine learning (GML) in Table II. In 
LML, there is parallelism over items of Table I and machine learning is applied sepa- 
rately to each item; needed machine learning parallelism is limited, typified by use of 
accelerators (GPU). In GML, the machine learning is applied over the full dataset with 
MapReduce, MPI or an equivalent. Typically GML comes from maximum likelihood or 
χ2 with a sum over the data items - documents, sequences, items to be sold, images, 
etc., and often links (point-pairs). Usually GML is a sum of positive numbers. as in 
least squares, and is illustrated by algorithms like PageRank, clustering/community 
detection, mixture models, topic determination, Multidimensional scaling, and (Deep) 
Learning that constructs a learning network integrating all images. 

3. TOWARDS A HIGH-PERFORMANCE BIG DATA SOFTWARE (HPBDS) ENVIRONMENT
As alluded to, the HPC-ABDS [Jha et al. 2014b] approach was partially inspired by the 
NIST big data initiative [NIST 2013a] that generated a collection of 71 use cases as 
well as a taxonomy, reference architecture, roadmap and study of security and privacy. 
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Table II. Some Features of NIST Use Cases 
Abbrev. # Description 
PP 26 Pleasingly Parallel or Map Only 
MR 18 Classic MapReduce MR (add MRStat below for full count) 
MRStat 7 Simple version of MR where key computations are simple reduction as found in 

statistical averages such as histograms and averages 
MRIter 23 Iterative MapReduce or MPI 
Graph 9 Complex graph data structure needed in analysis 
Fusion 11 Integrate  diverse  data  to  aid  discovery/decision  making;  could  involve  sophisti- 

cated algorithms or could just be a portal 
Streaming 41 Some data comes in incrementally and is processed this way 
Classify 30 Classification: divide data into categories 
S/Q 12 Index, Search and Query 
CF 4 Collaborative Filtering for recommender engines 
LML 36 Local Machine Learning (Independent for each parallel entity) 
GML 23 Global Machine Learning: Deep Learning, Clustering, LDA, PLSI, MDS, Large 

Scale Optimizations as in Variational Bayes, MCMC, Lifted Belief Propagation, 
Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt. Can call EGO or 
Exascale Global Optimization with scalable parallel algorithm 

51 Workflow: Universal so no label 
GIS 16 Geotagged data and often displayed in ESRI, Microsoft Virtual Earth, Google 

Earth, GeoServer etc. 
HPC 5 Classic large-scale simulation of cosmos, materials, etc. generating (visualization) 

data 
Agent 2 Simulations of models of data-defined macroscopic entities represented as agents 

High Performance Applica'ons 
120 So9ware projects 

Applica'on Abstrac'ons/Standards 
Graphs, Networks, Images, Geospa2al . 

Scalable Parallel Interoperable Data Analy2cs 
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Fig. 2.   HPC-ABDS 

Later [Chang 2014] meetings identified use case patterns and mapped them to the 
NIST reference architecture. Figure 2 summarizes the ideas in an HPC-ABDS hour- 
glass.To achieve high performance on data anlaysis, on the systems side, we have two 
principles: the Kaleidoscope of Apache Big Data Stack with 120 projects (see 5) has 
important broad functionality with a vital large support organization; HPC includ- 
ing MPI has striking success in delivering high performance, however with a fragile 
sustainability model. Therere key systems abstraction where Apache approach needs 
careful integration with HPC in areas of resrouce management, storage, programming 
model (for horizontal scaling or parallelism), collective and point-to-point communi- 
cation, support of iteration, and richness of data interface not just key-value pairs. 
In application areas, we define application abstractions to support Graphs/network, 
Geospatial, Genes and Images. 
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Ref [Fox and Luckow 2014] identified a set of Ogres (big data patterns) covering big 
data analytics with multiple facets including specific algorithms, problem architecture 
and its features, application class and data source structure. Here we exploit these 
facets to identify the programming models, data source models and overall end-to-end 
application models that MIDAS needs to support. 

Based upon an analysis of the Ogres, we identify the importance of the 5 parallel 
programming models. The parallel programming models supported by HPC-ABDS are: 
— PM1) Pleasingly Parallel (PP) includes many cases where there are sophisticated 

local machine learning applied in parallel – as in parallel image processing without 
global optimizations. 

— PM2) Search (Srch) includes collaborative filtering (in Mahout), motif (meme) de- 
tection in graph (network) algorithms, and spatial relationship based queries for 
spatial data, and is implemented using classic MapReduce or non-iterative Giraph. 

— PM3) Iterative MapReduce or Map-Collective using Collective Communication are 
seen in many global machine learning algorithms applied over the complete dis- 
tributed dataset and are illustrated by clustering and dimensionality reduction us- 
ing parallel linear algebra at their core. 

— PM4) Iterative Giraph is Map-Communication with point-to-point communication 
and includes graph algorithms such as maximum clique, connected component, find- 
ing diameter, and community detection. The problems differ in the difficulty of de- 
termining the data partitioning and this classic parallel load balancing issue can 
need sophisticated runtime techniques. 

— PM5) Asynchronous thread-based graph algorithms These are illustrated by short- 
est path and betweenness centrality algorithms for shared memory machines and 
we do not integrate them into HPC-ABDS in this proposal. 
In Table III, we present 5 distinct problem architectures that map into 5 distinct 

system architectures to cover the Ogres. The first four architectures of Table III which 
correspond exactly to the four forms of MapReduce that we have presented previ- 
ously [Ekanayake et al. 2010a] summarized. Note this only describes some core fea- 
tures of the facets in [Fox and Luckow 2014]. There are many other issues that need 
to be addressed including support of workflow. In particular the architecture for the 
rapidly evolving field of streaming (distributed) data needs more work. 

Note that we separate Map-Collective [Barrett et al. 1994; der Wijngaart et al. 2012] 
and Map-(Point to Point) Communication following the Apache projects Hadoop, Spark 
and Giraph that focus on these cases. These programming models or run times differ 
in communication style, application abstraction (key-value versus graph) and possible 
scheduling/load-balancing. HPC with MPI suggests that one could integrate into a 
single environment. This approach is illustrated by the Harp plug-in [Qiu and Zhang 
2014] to Hadoop which supports both models. 

SPIDAL will capture these common characteristics and requirements by identifying 
key abstractions; it will utilize capabilities of the underlying middleware that will be 
exposed via well-designed and engineered libraries. The MIDAS middleware imple- 
ments these with high performance in an ABDS context. MIDAS is based on abstrac- 
tions in the areas: a) Software defined System, b) Storage layer including a spatial 
access abstraction, c) Scheduling layer using advances in multi-level and application- 
level scheduling, d) Collective layer that permits Map Collective generalization of Iter- 
ative MapReduce, e) Parallelism or Programming model which generalizes the popular 
Giraph and MPI SPMD models. 

4. SCALABLE PARALLEL INTEROPERABLE DATA-ANALYTICS LIBRARY (SPIDAL)
This section summarizes the core algorithms proposed initially for SPIDAL.
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Table III. Distinctive Software/Hardware Architectures for Data Analytics 
1. Pleasingly Paral-
lel (Map Only)

Includes local machine learning (LML) as in par- 
allel decomposition over items and applying data 
processing to each item. Hadoop could be used 
as well as other High Throughput Computing or 
Many task tools 

2. Classic Map-
Reduce

Includes MRStat, search applications and those 
using collaborative filtering and motif finding im- 
plemented using classic MapReduce (Hadoop) 

3. Iterative  Map-
Collective

Iterative MapReduce using Collective Communi- 
cation  as  needed  in  clustering  -  Hadoop  with 
Harp, Spark etc. 

4. Iterative  Map-
Communication

Iterative MapReduce such as Giraph with point- 
to-point communication, includes most graph al- 
gorithms such as maximum clique, connected 
component, finding diameter, community detec- 
tion). Varys in difficulty of finding partitioning 
(classic parallel load balancing) 

5. Shared   (Large)
Memory

Thread-based  (event  driven)  graph  algorithms 
such as shortest path and Betweenness centrality. 
Large memory applications 

4.1. Graph and Network Algorithms 
4.1.1. Architectures   for   Graph   Algorithms. Distributed-memory   vs.    shared-memory. For 

graph problems, researchers have developed both distributed-memory algo- rithms [N. 
Edmonds 2010; Alam et al. 2013; Arifuzzaman et al. 2013; Zhao et al. 2010, 2012] and 
shared-memory algorithms [Prountzos and Pingali 2013; Ediger et al. 2012; Bader and 
Cong 2005, 2004; Madduri et al. 2007, 2009]. In a distributed memory sys- tem, each 
processor has its own local memory, and data is partitioned so that each processor 
contains one partition in its memory. Since processors may need to com- municate 
and exchange data with one another, poor locality is a major challenge for distributed-
memory systems, causing communication overhead that can lead to de- creased 
performance. A distributed memory system is good for graph problems with high 
locality. In a shared-memory system, data is stored in a common shared memory 
accessed by all processors and locality is not critical, although efficient thread paral- 
lelism may still be hard. 

Message Passing Interface (MPI) vs. Giraph. MPI is a general-purpose distributed 
memory system for parallel programming, with efficient communication primitives. 
Efficient MPI implementations have been developed for a number of graph problems, 
which scale to very large networks, using problem-specific knowledge of the computa- 
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Fig. 3.  SPIDAL: Library and Algorithms 

tion and communication patterns; this requires significant HPC expertise. In contrast, 
Giraph is easy to use, but does not allow easy access to partitioning and load balancing. 
Two main challenges in parallelization are: obtaining good estimates of the computa- 
tion cost for each partition, and load balancing, both of which require problem specific 
insights [Nguyen et al. 2013]. This makes the problem of finding good partitions that 
minimize communication cost very challenging [Alam et al. 2013; Arifuzzaman et al. 
2013]. 

4.1.2. Graph Algorithms in SPIDAL. To deal with the challenges posed by massive net- 
works, we will develop new algorithmic techniques based on MapReduce and Giraph. 
In iterative MapReduce, we will explore techniques to decompose the problem and 
enable efficient information exchange through the reduce operation. The problem of 
finding network motifs/subgraphs is well-studied [Zhao et al. 2010, 2012; Alon et al. 
2008; Aravind and Raman 2002; Gonen and Shavitt 2009; Milo et al. 2002; Qin and Gao 
2012] with sequential algorithms, although [Ribeiro et al. 2012] addresses a shared- 
memory architecture. We developed distributed-memory parallel algorithms [Zhao 
et al. 2010, 2012]; however, these algorithms are for a few special classes of motifs, e.g., 
trees. We propose to develop Giraph-based distributed-memory parallel algorithms for 
a more general class of motifs. We will also build on the techniques of  Karloff et al. 
[2010] to explore efficient MapReduce implementations for other PRAM algorithms 
with super-quadratic key-value space complexity, and identify problem classes which 
do not scale in MapReduce. For such problems, we will use Giraph. We will build on 
the general conversion theorem [Klauck et al. 2013] to develop implementations of al- 
gorithms for problems such as connectivity, subgraph enumeration and random graph 
generation in Giraph. Some of the results in [Klauck et al. 2013] yield constant factor 
or logarithmic approximation algorithms for problems such as shortest paths in near 
optimal time. We will explore the complexity of optimal algorithms for these problems. 

Community detection problems (including clustering approaches) have only received 
serious attention recently. Current methods [Satuluri et al. 2011; Meyerhenke et al. 
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2011; Satuluri and Parthasarathy 2009; Fortunato 2010; Sarkar and Dong  2011; Zhang 
et al. 2009] do not scale well for large  networks,  including  parallel  algo- rithms 
[Meyerhenke et al. 2011; Satuluri and Parthasarathy 2009; Fortunato  2010; Sarkar and 
Dong 2011; Zhang et al. 2009] for shared-memory architecture that can- not support 
massive-scale networks. We propose to develop scalable and distributed- memory 
parallel algorithms using Giraph. David Baders group (Georgia Tech) de- veloped 
parallel algorithms for some other network problems, such as shortest path and 
betweenness centrality [Madduri et al. 2007; Bader and J. JJ 1996; Bader and 
Madduri 2008; Madduri and Bader 2009; Bader 2010; Green et al. 2012; Jiang et al. 
2009]. Edmonds, Hoefler and Lumsdaine [N. Edmonds 2010] recently developed a 
space-efficient parallel algorithm for computing betweenness centrality in distributed- 
memory systems, while efficient sequential algorithms have been developed for se- 
lected network analytics problems such as diameter, pagerank, and counting triangles, 
at CMU (Christos  Faloutsos)  [Faloutsos  2012;  Kang  et  al.  2009,  2011;  Tsourakakis et 
al. 2009] and Sandia National Lab [Zhang et al. 2009; Seshadhri et al. 2012a,b]. 
There also are sequential libraries for network analytics such as Pajek [Batagelj and 
Mrvar 1998], Pegasus [Faloutsos 2012] (Christos Faloutsos), SNAP  [Leskovec  2012] (Jure 
Leskovec at Stanford), NetworkX [Hagberg et al. 2008] (at Los Alamos National Lab) 
and statnet [Handcock et al. 2003]. Similar libraries for parallel graph algorithms are 
needed to work with emerging massive networks. 

4.2. Spatial Queries and Spatial Analytics Algorithms Related Work 
Spatial Data Management Systems (SDBMS) have major limitations on managing and 
querying large scale spatial data. SDBMSs [pro 2013f,i,c,h] rely on parallel DBMS ar- 
chitectures such as a shared nothing architecture [Mehta and DeWitt 1995; Patel et al. 
1997; pro 2013j,d,g] to scale out. Parallel SDBMSs through partitioning are not opti- 
mized for computationally intensive operations such as geometric computations [Wang 
et al. 2012], and lack spatial partitioning to balance data and task loads [pro 2013b]. 
Data loading overhead is another major bottleneck [Pavlo et al. 2009; Aji et al. 2013; 
Wang et al. 2013]. GIS systems [Chang 2003; pro 2013a] often use SDBMS as the 
backend spatial engine. Work in [Cary et al. 2009; Zhang et al. a,b; Liu et al. 2010; 
Pozdnoukhov and Kaiser 2011; Li et al. 2012; Guo et al. 2010; Ballesteros et al. 2011; 
Ma et al. 2009; Akdogan et al. 2010] tries to tackle specific spatial algorithms using 
MapReduce, and ongoing MapReduce spatial querying systems include [Eldawy and 
Mokbel 2013; Daszak 2000]. Our Hadoop-GIS [Aji et al. 2013; pro 2013e] provides a 
general framework for spatial queries and analytics with MapReduce. Hadoop-GIS is 
integrated into Apache Hive to support declarative spatial queries. 

Spatial data has multiple dimensions and there is no concept of a key in a spatial 
space for data partitioning or task partitioning. We will partition space into tiles, and 
breaks down time-consuming spatial operations into smaller tasks on tiles, running 
them in parallel in HPC-ABDS MapReduce. Thus a tile serves as a key, and the objects 
of a tile are the value. To avoid data skew, density aware spatial partitioning methods 
are provided. Spatial query processing then becomes a problem of designing query 
methods that can run on tiles independently while preserving correct semantics. A 
generic framework for distributed spatial data processing has the following steps. Ini- 
tialization includes data partitioning, uploading and indexing. For each spatial query, 
the index is used to identify regions of interest for the query. After that, spatial query 
processing is executed independently for each tile, in parallel. During each tile based 
query, on-demand indexing can be provided to accelerate queries. Then a normaliza- 
tion step will be performed to fix results due to partitioning. Most spatial processing 
methods can be mapped into above patterns, and spatial clustering follows global ma- 
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chine learning patterns including nearest neighbor search, density and statistics based 
spatial clustering and regression analysis. 

4.3. Core Image Processing Algorithms Related Work on Pathology informatics 
The availability of advanced scanners has fueled efforts in whole slide image analysis. 
Algorithms have been developed for detection and extraction of features from whole 
slide images. Data models and databases for representation and management of mi- 
croscopy image data have also been developed [Goldberg et al. 2005; Schiffmann et al. 
2006; Martone et al. 2008, 2003; Hayden et al. 2007; Wang et al. 2010]. ITK and VTK 
are two well-known libraries mainly designed to support Radiology images but se- 
quential processing can take hours for an image. Several recent research efforts, have 
investigated the use of GPUs, distributed memory parallel machines, and Grid com- 
puting to analyze large images and datasets. SPIDAL will build on and complements 
this and will enable much larger scale investigations. The abstractions will enable 
interoperability of image analysis with other methods such as clustering, motif detec- 
tion, complexity reduction, and network abstraction, leading to broader deployment 
and novel analyses. Related work in computer vision. 

While computer vision has a 50 year history, only recently have researchers con- 
sidered large-scale datasets driven by the dramatic rise of online social media. For in- 
stance, papers in 3D reconstruction [Crandall et al. 2011; Agarwal et al. 2009; Crandall 
et al. 2011; Crandall and Snavely 2012], visual geolocation [Li et al. 2009; Hays and 
Efros 2008], denoising [Hays and Efros 2007], scene classification [Xiao, Hays, Ehinger, 
Oliva, and Torralba Xiao et al.], and object recognition [University 2014] use millions 
of images from Flickr. While there are established libraries for single machine com- 
puter vision, like OpenCV, Matlab, CImg, VLFeat, and ImageJ, there are not widely 
adopted libraries for large-scale computer vision, leading researchers to roll their own 
ad-hoc libraries (although some nascent parallel libraries are under development, like 
CloudCV (Virginia Tech) and Hadoop Image Processing Interface (Virginia)). 

In SPIDAL, we will provide a generic high-performance framework that frees vision 
researchers from considering systems-level issues.Our core image processing library 
encapsulates common operations employed by computer vision, pathology informat- 
ics, spatial informatics, and radar informatics. These routines include low-level image 
preprocessing like convolution, edge detection, color correction; core primitive object 
detection (e.g. Hough transform) and segmentation (MinCuts); low-level feature ex- 
tracting [Lowe 2004; Dalal and Triggs 2005; Torralba, Murphy, Freeman, and Rubin 
Torralba et al.]); registering images with 3D models; object matching; and 3D feature 
extraction. 

The library also includes derived routines for specific domains. For example, in 
pathology and spatial informatics, whole slide images are extremely large (10 billion 
pixels per image) and cannot fit in memory requiring tiling as described above. This 
is not the case in computer vision, where images are typically from consumer cameras 
and the challenge is number of images and not their individual size. We will provide 
a generic parallel image processing pipeline that supports different image analysis al- 
gorithms with HPC-ABDS. For large images, we provide tile-based partitioning with 
buffered tiles at boundaries. Tiled images can be processed independently in paral- 
lel for image pre-processing, segmentation, and feature extraction. The results from 
tiles are converted into vector-based geometric shapes and structural features with 
correction for boundary object normalization. For 3D images, one performs 3D object 
grouping from 2D segmentation results, and 3D feature extraction, which again can 
be run in parallel. 
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4.4. Existing General Libraries and Machine Learning 
Mahout [Apache Mahout 2012] is an open source project that builds machine learning 
libraries based on Hadoop MapReduce. It supports supervised and unsupervised learn- 
ing algorithms such as Collaborative Filtering, Kmeans Clustering, Latent Dirichlet 
Allocation, and Naive Bayes Classifiers. While it offers fast implementations for some 
algorithms like Na”ive Bayes, for problems with  iteration  (like  clustering)  it sacri- fices 
performance for scalability by writing intermediate data out to disk after each 
iteration. For several algorithms, like Hidden Markov Models, Multilayer Perceptron, 
and Logistic Regression, it does not provide any parallel implementation at all (just a 
single-machine version). 

We have studied Mahout [Apache Mahout 2012] carefully, and have chosen key algo- 
rithms to include in SPIDAL, including SVD, Random Forests, SVMs, Kmeans, HMMs, 
and LDA. For some of these, either IU or Mahout already has parallelized code, which 
we will simply port to HPC-ABDS to make them available in our framework. Other 
Mahout algorithms are either not parallelized or require iteration (which in Hadoop 
requires costly  disk I/O); for  these, HPC-ABDS will offer  much higher-performance 
implementations. 

The Spark MLLib (MLbase) library [MLLib 2014] is another promising effort, offer- 
ing a few algorithms (SVM, Kmeans, gradient descent) supported by a small commu- 
nity. We will monitor developments in that library as it matures and port from there 
if possible. We will also port clustering routines from R [pro 2012] to test our ability to 
move algorithms from this important library to HPC-ABDS. 

Parallelized implementations from IU include clustering with a sophisticated de- 
terministic annealing (DA) method which was originally developed with Rose [Rose 
1998; Rose et al. 1990] but with recent parallel implementations by Fox [Fox 2013; Fox 
et al. 2009a]. These codes cover the cases of both metric and non-metric spaces and 
have been used extensively in bioinformatics [Qiu et al. 2011; Fox et al. 2009b; Ruan 
et al. 2012a; Stanberry et al. 2012; Ruan et al. 2012b; Qiu et al. 2010,?; Hughes et al. 
2012; Ruan and Fox 2013; Ruan et al. 2014; Fruhwirth et al. 2011]. These will build 
upon [Choi 2012], wherein developed DA improvements to mixture model approaches 
to find hidden factors and we will also implement this in HPC-ABDS. This was suc- 
cessfully applied to find the context of HPC jobs and improve pre-fetching [Choi et al. 
2012]. 

The non-metric case uses Multi-Dimensional Scaling (MDS) using either SMACOF 
improved with DA [Ruan and Fox 2013; Bae 2012], or a method using nonlinear χ2 

minimization [Kearsley et al. 1995] which is typically slower but allows a more flex- 
ible weighted objective function. There are several methods for dimension reduction 
for metric spaces and we will deploy in SPIDAL, e.g., a parallel DA enhanced GTM 
(Generative Topographic Mapping) from [Choi 2012; Choi et al. 2011]. 

5. MIDDLEWARE FOR DATA-INTENSIVE ANALYTICS AND SCIENCE (MIDAS)
The aim of MIDAS is to provide a scalable runtime system and appropriate resource- 
management abstractions enabling SPIDAL, and thereby Big Data applications. As 
identified by the Ogres and their facets, Big Data applications have a wide range of 
characteristics requiring different programming models and different forms of paral- 
lelism: from the execution of large numbers of loosely-coupled tasks, to in-memory 
caching for iterative MapReduce to parallel linear algebra computations to support 
GML algorithms, such as Deep Learning. MIDAS provides the underlying resource 
management middleware and heterogeneous infrastructure access layer which will 
support SPIDAL libraries to work efficiently across these application types over a 
range of resources. 
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Fig. 4. MIDAS Layered Architecture View: The Pilot-Layer provides the basis for higher-level MIDAS ab- 
stractions supporting e.g. access to heterogeneous compute and data resources and in-memory caching for 
the iterative MapReduce programming model. 

Figure 4 shows the architecture of MIDAS. There are two primary design objec- 
tives of MIDAS: (i) Provide high-level abstractions (e.g. scalable data processing, inter- 
process communication and storage supporting both query and analysis), so as to hide 
details of different lower level implementations (e.g. for accessing data or resources via 
HPC schedulers such as SLURM, Big Data schedulers, such as YARN [Hortonworks 
2014] or Cloud backends like Amazon and Google), (ii) provide a flexible middleware 
to support four key programming models identified in Table III: (PM1) Pleasingly par- 
allel, (PM2) Search using Classic MapReduce, (PM3) Iterative MapReduce with Col- 
lectives and (PM4) Iterative Graph Processing. These programming models require 
different runtime systems to extract performance on different platforms varying from 
clouds to HPC. MIDAS will provide the scalable runtime system to support these pro- 
gramming models via appropriate execution-processing capabilities on different plat- 
forms. 

To support these programming models, we propose several abstractions: an inter- 
process communication layer and a layer handling computation, offering, for exam- 
ple, different data abstractions for Hadoop (key-value, dataflow) and Giraph (graph). 
Communication abstractions enable the coordination and exchange of data between 
tasks. In particular iterative MapReduce tasks need collective operations while graph 
processing largely needs point-to-point communication. We have already shown that 
using classic MPI techniques can provide a collective layer that outperforms existing 
(iterative) MapReduce approaches on both cloud and HPC environments [Jha et al. 
2014b; Qiu and Zhang 2013, 2014]. We will expand this concept in MIDAS covering all 
4 programming models and defining the HPC-ABDS MapReduce model shown in sys- 
tem architecture. The communication layer is designed in a pluggable, infrastructure 
agnostic way and can be used within Hadoop applications and HPC application, based 
e. g. on the Pilot abstraction.

In-Memory abstractions can be used to implicitly facilitate the data exchange be-
tween multiple tasks, or to efficiently retain data between generations of tasks. This 
is essential to efficiently support iterative processing or graph processing (patterns 
(MP3) and (MP4)). In particular, Harp [Qiu and Zhang 2014] building on Iterative 
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MapReduce Twister [Ekanayake et al. 2010b] is an open source collective commu- 
nication library which can be plugged into Hadoop. With this plug-in, Map-Reduce 
jobs can be transformed into Map-Collective jobs and users can invoke efficient in- 
memory message passing operations such as collective communication (e.g. broadcast 
and group-by) and point-to-point communication directly in Map tasks. For the first 
time, Map-Collective brings high performance to ABDS in a clear communication ab- 
straction, which did not exist before in the Hadoop ecosystem. We expect Harp to equal 
MPI performance with straightforward optimizations. In addition, Harp improves the 
expressiveness in big data processing with the support of data abstraction types such 
as arrays, key-values, and graphs with related collective communication operations 
on top of each type. Several applications have been developed based on Harp frame- 
work, including K-means clustering, Multi-dimensional scaling and Page-Rank. Harp 
being based on Hadoop leverages better sustainability and fault tolerance properties. 
The above is illustrative of a critical design challenge that faces MIDAS: balancing 
performance with flexibility. 

In earlier Hadoop versions, it was necessary to retrofit non-MapReduce applications, 
as in for pleasingly parallel processing and machine learning, into the rigid MapRe- 
duce programming model. This is not necessary anymore for Hadoop-2 (YARN) [Hor- 
tonworks 2014], as YARN can co-locate and run any application MPI, MapReduce, 
iterative MR, graph, or based on any other library/framework on a Hadoop cluster. 
Ensuring support for YARN on HPC platforms such as XSEDE platforms will thus 
be an important objective. However, while YARN removes the programming model 
limitation, various challenges remain: (i) the current usability of YARN on HPC en- 
vironments is limited (as it was designed as a system-level framework), (ii) resource 
containers cannot easily be re-used across multiple tasks, and (iii) interoperability 
with HPC environments (Blue Waters, to a variety of XSEDE resources). To address 
these limitations, we propose to build upon and extend the Pilot-abstraction, which is a 
proven approach in supporting data-parallel tasks on top of heterogeneous infrastruc- 
tures [Luckow et al. 2012, 2014]. Using Pilot-Jobs, we allow processing frameworks to 
interoperably exploit YARN, common HPC and cloud resource managers. Further, we 
will extend the Pilot-Data abstraction to support in-memory processing required for 
iterative MapReduce in an infrastructure and data source agnostic way. 

Looking at data source aspects of the Ogres (big data patterns), most applications 
use a collection of files but we expect a growing interest in object stores and will sup- 
port both with the Pilot-Data abstraction. Several search problems need customizable 
dynamic indices. Also, relevant is in-memory data storage, data format, data partition- 
ing and the access model. Thus, we will extend canonical abstraction of Pilot-Jobs to 
Pilot-Data to support interoperable access to data stored in Hadoop, databases, and 
NOSQL as well as other types of HPC storage (Lustre, iRODS, etc.) as needed. 

In addition to data access, MIDAS will support the common data processing pat- 
terns (partition, process, merge, etc.) on top of datasets managed by Pilot-Data. As 
demonstrated by the evolution to YARN, there is an increasing need to provide appli- 
cation specific scheduling and resource management control; the Pilot abstraction has 
demonstrated such capabilities. Application-level scheduling as provided by the Pilot- 
layer will be an essential tool to integrate library resource usage modes (see processing 
patterns) with resource allocation/usage. This will be required for the network science 
community, where flexible integration with a logical resource partitioner is important. 
For example, we will have to examine the trade-offs of partitioning at the MPI level or 
at the Giraph programming model depending upon data size and architecture. In gen- 
eral, MIDAS is intended to be agnostic to workflow models and will support gateways, 
scripting and specific workflow tools. Auto-tuning (akin to ATLAS for linear algebra 
software) and load balancing for each execution processing model to optimize data lo- 
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cality and communication is a critical capability to provide to analytical application. 
Last but not least, the infrastructure access layer will use the existing capabilities 
of SAGA, which provides most resource access functionality using a standards-based 
layer. This will ensure that the new software footprint of MIDAS will be small, whilst 
providing reuse of established and existing building blocks. 

6. DISCUSSION AND CONCLUSION
As alluded to in the title, HPC-ABDS is the first attempt led by the Indiana-Rutgers 
collaboration at creating a software system to meet Big data analytics, i.e., a high- 
performance Big Data Stack (HPBDS). There are several incipient and emerging ef- 
forts at addressing the requirements for big data on high-end systems. HPC-ABDS is 
distinguished by its efforts to address the requirements of a well defined set of ap- 
plication patterns and their primary characteristics (referred to as Ogres), that are 
commonly required of data-analytics applications, via the construction of libraries that 
work across a range of high-end computing platforms, including clouds. We believe the 
design of such SPIDAL libraries – based upon an analysis of Big Data Ogres, as op- 
posed to a limit set of applications – along with a careful co-design of the resource 
management MIDAS layer makes HPC-ABDS distinctive. 

In addition to the NIST use cases, HPC-ABDS will enable multiple many other com- 
munities to use a core set of libraries SPIDAL – graphs, imaging, spatial,  remote sensing, 
HPC simulation and modeling – on top of an abstractions-based (Job, data, 
communication, in-memory operations, parallelism) high performance middleware MI- 
DAS. By integrating the two fundamental building blocks – MIDAS and SPIDAL, HPC-
ABDS will provide new levels of scalability, application performance along mul- tiple 
dimensions by combining application expertise, the broad Apache Big Data stack and 
best practice HPC. Specifically, HPC-ABDS will, (i) implement resource manage- ment 
capabilities of MIDAS using job and data abstractions, as well as scalable and 
reusable fine-grained building blocks for HPC/high-end resources that realize com- 
munication and in-memory abstractions, (ii) define library interfaces (SPIDAL, with 
appropriate language bindings) to these fine-grained building blocks, (iii) provide scal- 
able and parallel analytic libraries by integrating the aforementioned interfaces, the 
fine-grained building blocks with the resource management middleware capabilities of 
MIDAS. 

SPIDAL libraries will be provided with a set of simple benchmark kernels. The ini- 
tial focus will be on data analytics libraries and needed abstractions built on a skeletal 
MIDAS middleware whose key features have already been demonstrated. 
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Fig. 5.   For updated figure see: http://hpc-abds.org/kaleidoscope/ 
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