
Abstract—Sports racing is attracting billions of audiences each
year. It is powered and transformed by the latest data analysis
technologies, from race car design, driving skill improvements to
audience engagement on social media. However, most of the data
processing are off-line and retrospective analysis. The emerging
real-time data analysis from the Internet of Things (IoT) result in
fast data streams generated from distributed sensors. Applying
advanced Machine Learning/Artificial Intelligence over such data
streams to discover new information, predict future insights and
make control decision is a crucial process. In this paper, we start
by articulating racing car big data characteristics and present
time-critical anomaly detection of the racing cars with the real-
time sensors of cars and the tracks from actual racing events. We
build a scalable system infrastructure based on neuro-morphic
Hierarchical Temporal Memory Algorithm (HTM) algorithm
and Storm stream processing engine. By courtesy of historical
Indy500 racing logs, evaluation experiments on this prototype
system demonstrate good performance in terms of anomaly
detection accuracy and service level objective (SLO) of latency
for a real-world streaming application.

Index Terms—big data, stream processing, anomaly detection,
neuro-morphic computing, edge computing

I. INTRODUCTION

The IndyCar Series, currently known as the NTT IndyCar

Series under sponsorship, is the premier level of open-wheel

racing in North America. Featuring racing at a combination

of superspeedways, short ovals, road courses and temporary

street circuits, the IndyCar Series offers its international lineup

of drivers the most diverse challenges in motorsports. Indy500

is its premier event at Indianapolis Motor Speedway where the

racing cars reach speeds up to 235 mph.

INDYCAR, the sanctioning body for the IndyCar Series,

utilizes a Timing & Scoring application that monitors lap

times of cars to the ten-thousandth of a second, the closest

in motorsports. With the advent of smaller but powerful

computational devices, the cars and race tracks come fitted

with hundreds of sensors and actuators. The sensors in the cars

record and transmit various metrics (speed, engine rpm, gear,

steering direction, brake et al.) to the main server present on

premises of the Indy 500 race track. These advanced informa-

tion technology infrastructures support the racing management

and the communication between the drivers and their teams.

Each race generates a large volume of the telemetry and timing

& scoring data, for example in the race of May 27, 2018,

it contains 4,871,355 records with consecutive data arrival

interval of 6 to 8 records per second for each car on average.

To build a system to support real-time data analysis, such

as anomalies detection on the Indycar timing & scoring data

is a challenging task. First, we must have a learning algorithm

capable of capturing the drifting of data patterns in real-time.

Static pre-trained neural network models are not capable of

making correct decisions or inference on the continuously

evolving data streams which have their patterns changing

over time. The desirable algorithm should keep learning and

detecting from the streaming data in an online fashion, i.e.,

without looking at data forward. Second, we must adhere to the

time constraints of a real-time application with a reasonable

execution latency. The IndyCar application needs a real-time

response with latency below 100 milliseconds, in order to cope

with the sensor data arrival rate of [80,90] milliseconds. As the

learning algorithm keeps learning from the data stream which

is resource intensive, dealing with multiple metrics across all

racing cars requires a scalable distributed system.

One such avenue lies at the intersection of real-time stream

processing and machine learning. We aim to address this

problem here, developing an application tailored to the data

and requirements of the Indy500 race. We leverage an on-

line learning algorithm called Hierarchical Temporal Memory

(HTM) [14], developed by Numenta and deploy it on Apache

Storm. Our main contributions are summarized as follows:

• Propose a scalable system design that supports real-time

stream processing.

• Implement a prototype system that achieves good perfor-

mance in terms of detection accuracy and service of the

objective of latency.

• Performance analysis on HTM Java package and its

deployment in storm cluster.

• Annotate Indy500 dataset on anomalies with known

events and evaluate the performance of detection.

Anomaly Detection over Streaming Data:
Indy500 Case Study

Chathura Widanage1 Jiayu Li1 Sahil Tyagi1 Ravi Teja1 Bo Peng2

Supun Kamburugamuve2 Jon Koskey3 Dan Baum4 Dayle M. Smith4 Judy Qiu2

Department of Intelligent Systems Engineering

Indiana University

1{cdwidana, jl145, styagi, rbingi}@iu.edu
2{pengb, skamburu, xqiu}@indiana.edu

3{jkoskey}@indycar.com
4{dan.baum, dayle.m.smith}@intel.com

II. PROBLEM STATEMENT

A. Anomaly Detection of Telemetry in auto racing

Telemetry in auto racing has improved the domain very

much in the last decade [18] [21]. Broadcast sports such

as motor racing have brought opportunities for spectators

to monitor the performance of cars in real time. Mikhail

Grachev says data is the winning force in motor racing and

that telemetry data is very valuable to them. This allows the

racing car team to analyze the existing data and identify the

next move. Specifically, telemetry data allows the team to

be synchronized with the car [15]. Not only can the sensor

readings be used in basic electromechanical operations, but the

data transmitted over the network can also be used to perform

data mining to identify anomalies in the system, component

malfunctions or statistics generation.

To better understand the requirements for Anomaly Detec-

tion over IndyCar streaming data, we need to explore the

properties of the sensors data and how they are different from

those of general big data. IndyCar data exhibits the following

characteristics:

• Large-Scale Streaming Data: over 150 sensors per car of

33 cars are generating streams of data continuously.

• Heterogeneity: Various sensors data from different cars,

the tracks, GPS, 36 video cameras and racing information

such as weather and wind resulting in data heterogeneity.

• Time and space correlation: sensor devices are logging

to a specific time-stamp for each of the data items.

• Noise data: Indy500 dataset may be subject to errors and

noise during acquisition and transmission.

B. Hierarchical Temporal Memory Algorithm (HTM)

HTM is capable of detecting anomalies from data streams

in real-time and performs well on the concept drift problems.

Related works using HTM [6] [19] [25] [26] demonstrate

that it excels many other state-of-the-art anomaly detection

algorithms. We adopt HTM as the core anomaly detection

algorithm in our system.

HTM imitates the process of sequential learning in the

neocortex of the brain, which is involved in higher cognitive

functions such as reasoning, conscious thoughts, language,

and motor commands [4]–[6], [16]. HTM sequence memory

models one layer of the cortex, which is organized into a

set of columns of cells, or neurons, as shown in Fig. 1.

Each neuron models the dendritic structure of neuron in the

cortex. Sufficient activity from lateral dendrite will cause a

neuron to enter an active state, and a cell activated by lateral

connections prevents other cells in the same column to enter

an active state, leading to sparse data representation in HTM.

Sparse representations enables HTM to model sequences with

long-term dependencies, as in Fig. 1c, the same input ”C” in

two sequences invokes different prediction of either D or Y

depending on the context several steps ago.

The connections between the neurons are learned from

input data continuously. The input, xt, is fed to an encoder

and create a sparse binary vector representation a(xt). Then,

Fig. 1: Working of HTM sequence memory [6].

all neurons update their status by the inputs from connected

neurons with active cells. It outputs predictions in the form

of another sparse vector π(xt). The prediction error, St, is

calculated by the number of bits common between the actual

and predicted binary vectors, as

St = 1− π(xt−1) · α(xt)

|α(xt)| (1)

where |α(xt)| is the scalar norm, i.e. the total number

of 1 bits in a(xt). Furthermore, anomaly likelihood can be

calculated from the prediction error by assuming it follows a

normal distribution which is estimated in a previous window.

As the likelihoods are very small numbers, a log transform

is used to output the final anomaly score. For example, a

likelihood of 0.00001 means we see this much predictability

about one out of every 10,000 records, and the final anomaly

score is 0.5.

C. Streaming Infrastructures

Successful big data processing systems, such as Hadoop

and Spark were not built to process and take actions on

continuous data streams flowing in at fluctuating rates. Such

requirements and constraints for real-time processing led to the

development of Distributed Stream Processing Systems [13]

[17] like Apache Storm [24], Flink [10], Spark Streaming [27].

Spark Streaming is an extension to Spark as it uses a standard

API to process incoming records as a set of mini-batches rather

than process one tuple (or record) at a time. On the other hand,

Storm and Flink follow a tuple-wise processing paradigm

where we define the topology as a DAG (Directed Acyclic

Graph) composed of parallel running tasks. Flink provides a

unified API for batch and stream processing with pipelined

data transfers. The message guarantee offered in Flink is

exactly-once, while Storm offers at-least-once, exactly-once,

and at-most-once guarantees.

As HTM is a sequential online learning algorithm, we will

apply different metrics (e.g. SPEED, RPM and THROTTLE)

in the same telemetry stream that can be processed by multiple

HTM networks in pleasingly parallel. Given the application

10

requirements and topology design, we decided to proceed with

Apache Storm as the stream processing engine.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. System Architecture

While anomaly detection is the core module that we focus

on in this paper, the application needs a real-time response

with latency below 100 ms, in order to cope with the arrival

rate of [80,90]ms. It requires an end-to-end system as the

testbed of streaming infrastructure. Fig. 2 shows the system

architecture of five components. 1) We split IndyCar’s TCP

stream into two new streams at Event Publisher component

and one goes directly to the database and other one is fed

to the Message Queuing Telemetry Transport (MQTT) broker.

2) We use MQTT as the communication protocol within our

infrastructure due to its high quality of service (QoS) [20]

and lower bandwidth consumption. Apache Apollo is used as

the message broker implementation due to its simplicity and

performance. 3) Data processing or heavy lifting is done by

a distributed HTM network which has been deployed over

an Apache storm topology. Storm consumes topics from the

message broker and feeds in real-time to the HTM network.

The output from the HTM is published back to the message

broker, which will be consumed by SocketServer and finally

broadcast to the clients. HTM network is powered by a

community managed Java implementation of the algorithm,

HTM.java [1]. 4) We utilize a MongoDB database to persist

all raw data and computed data in real-time for offline analysis.

5) We built a front end application to visualize the results of

the processed data stream in real-time. The primary objective

of this front end application is to make decision making

easier and support drivers, pit-crew, engineers, and entertain

remotely connected motor sports fans. We have made this

application responsive, so it can be viewed in any modern

web browser, including most of the mobile web browsers. Our

system prototype online demo can be accessed at [2].

B. HTM Deployment in Storm Cluster

The central research problem we address in the system

design is, How to deploy the HTM neural networks in a storm
streaming cluster in order to achieve specific SLO of latency
and scaling? HTM network provides good performance in

detecting anomalies, and it needs relatively more computation

resources when it keeps learning and inferring. The processing

time for each incoming data record is not constant but depends

on the context of the stream and the current learned model.

In the Indy500 data streams, there are 33 cars and several

telemetry metrics for each car. For example, when we use

three metrics, SPEED (vehicle speed), RPM (engine speed)

and THROTTLE, there are 99 HTM networks that should be

deployed in the system with each network dealing with one

metric. A trade-off between resource allocation and SLO of

latency violation is the major factor in our system design.

First, the processing time of the HTM network should on

average less than the application SLO requirement. We do

Fig. 2: System Architecture. IndyCar application processes the

timing&score data streams of the race, detects anomalies and

responses in real-time. Multiple types of clients are supported.

extensive data analysis and performance evaluation on HTM

in section IV.

Second, HTM.java provides an asynchronous interface for

input and output. Internally, each network spawns a long-

running thread. Thus, a thread level synchronization is still

needed even when all the metrics of the same car are deployed

on the same worker. This would introduce overhead and

latency to the overall processing time.

Third, in order to reduce the unnecessary overhead of thread

level synchronization and improve CPU utilization, we opti-

mize the HTM.java library by changing the threading model.

By default, HTM.java spawns a thread per layer in HTM

network. Since anomaly detection is a one layer network,

HTM.java builds one network for each metric and spawns one

thread accordingly. In Fig. 3, three threads are spawned for

three metrics for each car, and one instance of MQTT message

client is created per car (per storm task), where it internally

spawns four threads for, sending, receiving, pinging and for

calling-back. With this default threading model, our setup

spawns 8 threads per car including the Storm’s threads. Hence

if we schedule to process 33 cars within a single machine, it

spawns a total of 264 threads (33 storm executor threads, 4*33

11

Fig. 3: HTM.java default threading model

message client threads, 3*33 HTM threads), which creates a

significant resource contention issues.

By analyzing the thread utilization of each car, we identified

that due to the arrival rate in the range of [80,90] ms, most of

the threads remain in the waiting state. This adversely affects

latency since, this behavior increases the amount of context

switching and at the same time in-order to process a single

event, three HTM threads need to be returned to the running

state from waiting state. Since we need to combine outputs

from all three HTM networks, before sending an event back to

the broker, this drastically increases the latency for processing

a single tuple.

As shown in Fig. 4, an improvement for this problem is to

customize the threading model of the HTM.java library and

handle multiple layers of multiple HTM networks by a group

of long-running threads, instead of scheduling one thread per

layer in 3. When a new HTM network is instantiated within

the same Java virtual machine(JVM), we add the layers of that

networks to a shared queue, which is visible globally across all

the instances of HTM networks within that JVM. We also keep

a globally visible counter which keeps the number of HTM

networks instantiated within the JVM. Based on this count,

we spawn threads on demand, to match one thread per three

networks (configurable) rule. Each of these threads iteratively

polls (takes the first in the queue) a layer from the queue and

compute or process that layer and adds that back to the queue.

If there is nothing to process in a particular layer, instead of

waiting for data, the thread moves on to the next available layer

in the queue. Along with the alterations of the HTM threading

model, we configured storm tasks within the same JVM to

share a single instance of MQTT client instead of creating

an instance per task. We even replaced the default TCP

connection factory of message client with our implementation

to configure clients with TCP NODELAY, in order to improve

the latency of messages. These modifications reduced the

threads per JVM significantly, and for 33 cars scheduled in

the same machine, the total thread count was reduced down

to 48 (4 MQTT client threads, 11 HTM processing threads, 33

storm executor threads). Intuitively, the best performance we

can get is to dedicate one CPU core to one HTM network. In

the assumption that the HTM network processing time is less

than SLO, more compact deployment strategies are possible.

We compare several deployment strategies in section IV.

Fig. 4: HTM.java customized threading model

IV. PERFORMANCE EVALUATION AND CASE STUDY

In regards to hardware configuration, all experiments are

conducted on a 10-node Intel Haswell cluster at Indiana

University. Each node has two 24-core Intel(R) Xeon(R) CPU

E5-2670 v3 @ 2.30GHz processors and 128GB memory.

A. Indycar dataset

Results Protocol(RP) is being used in the INDYCAR timing

system. RP definition provides telemetry and specific details

for each session results, such as rankings with markers, team

information, pit stop stats and many more. Table. I shows the

record format for the telemetry records. We use RP log of the
TABLE I: Enhanced Results Protocol and Telemetry.

Fieldname Data type Comments
No. Character Car number 4 characters max

Time Integer Time of Day in ms
Position Float Metres since start of lap (1234.56)

Speed Float MPH ie. 123.456
Engine Float RPM ie. 12345

Throttle Float % throttle
Brake Float % brake

Steering Float -1.00 .. 0.00 .. 1.00
Gear Integer 0 = Neutral, 1..6 = Gear 1 through 6

Indy500 final on the 27th of May 2018, which contained a

total of 4,871,355 records (4,464,043 are telemetry records

including warm-up rounds). The actual race has 2,373,400

records for 33 cars, that is over 75,000 telemetry records per

each car on average, and these records span over 3.5 hours.

During the racing, speed metrics varies a lot due to different

types of events with Vehicle speed spans [0,238.95] miles/hour

and Engine Speed spans [0,12920] RPM. Other metrics have

smaller range, or can be discrete as Gear that falls into the

range of [0,6]. We have observed variable data arrival intervals

and missing or delayed events for all the cars. Fig. 5 shows

the distribution of time gaps between two consecutive events

(SPEED, ENGINE/RPM, THROTTLE) for all 33 cars.

B. System Latency

Analysis on the latency introduced by individual compo-

nents of our architecture diagram, as denoted in Fig. 2, is the

first step to enable our design deliver required SLO of latency

reduction for the IndyCar real-time application.

12

0 100 200 300 400 500+
0

0.5

1

1.5

Arrival Time Interval(ms)

R
ec

or
ds

(M
ill

io
n)

Fig. 5: Distribution of time gap between two consecutive

events. Most of the records arrive in the range [80,90] ms,

less than 0.05% of the records delay more than one second.

1) Network Latency: The Indycar application is based on

a distributed streaming system having multiple components

which are interconnected over the network. Some components

utilize local area network(LAN) while some components con-

nect to the system through the internet. Hence we carried out

benchmarks covering both of these connection types.
TABLE II: IndyCar message Latency and Jitter evaluation

No. of Cars Client-Server(ms) LAN / PubSub(ms)
min max avg min max avg

1 6 223 18.45 0.06 18.71 0.26
8 1 237 19.72 0.05 67.83 0.32

16 12 247 23.88 0.001 55.51 0.34
24 2 248 24.81 0.13 57.87 0.31
33 2 246 31.57 0.001 122.78 0.30

Intranet Latency. Since we have been initially using a file-

based data source, messages from record reader (an application

capable for reading log files and stream while keeping real

timing between consecutive events) to WebSocket server goes

through the LAN. We performed the evaluation for streaming

events of 1, 8 , 16, 24 and 33 cars to analyze the variation

of latency with respect to data volume. The ”LAN/PubSub”

latency in Table II shows that the average message flow

latency within the LAN lies within microseconds range even

for the maximum expected data volume for a race of 33 cars.

Hence, the latency of LAN messages over message broker is

negligible. Internet Latency. We implemented a web-sockets

based web application to visualize the results of anomaly

detection in real-time. As the columns of ”Client-Server” in

Table II, the latency of the message flow increase proportional

to the volume of data. However, we identify that this variation

is not only because of network latency, but also due to the

single threaded nature of the web client application. In the real

field setup, we’ll be able to minimize the network overhead

via data compression and multi-threading at client.

2) Latency from standalone HTM Module: HTM keeps

learning and inference on incoming data streams. The ex-

ecution time depends on the input and the current neural

network status. We run experiments on the individual data

stream and draw the distribution of the processing time which

is the latency the HTM.Java module introduced. Fig. 6 shows

the performance evaluation on SPEED, RPM and THROTTLE

of Car20. 98% of the data is less than 20 milliseconds, and

99.9% of the data is less than 80 milliseconds. The average

is less than 8 ms. If including the network latency and other

5 10 20 40 60100
102
104

Time (ms)

Fr
eq

ue
nc

y

(a) Speed

5 10 20 40 60100
102
104

Time (ms)

Fr
eq

ue
nc

y

(b) RPM

5 10 20 40 60 80100

102

104

Time (ms)

Fr
eq

ue
nc

y

(c) Throttle

Fig. 6: Latency introduced by HTM Module for Car20 and

three metrics separately and presented in log-scale.

overhead, deploying HTM networks for IndyCar data streams

can potentially guarantee an SLO of latency. Fig. 9 shows the

distribution of processing time of HTM.Java module, within

20 ms except for a few spikes occur at the beginning in which

the HTM network is in the learning phase.

C. Deployment of HTM Networks in a Storm cluster

We run experiments to explore the candidates of deployment

strategies - what is the SLO of latency can be achieved under

a specific deployment of HTM in Storm? Two extreme cases

include a). The best SLO if provide an unlimited resource.

We allocate one CPU core for each HTM network. b). The

SLO if given a tightly limited resource in which only one

single node is allocated. The rightmost side of the x-axis of

Fig. 7 represents latency of all 33 car data, corresponding to

the OPT-N1, N2, N4 setup. The max values are 8329, 4373,

and 1895 respectively, due to incidents such as Java Garbage

collection.

OPT-N1 OPT-N2 OPT-N4
5

15

40

65

La
te

nc
y(

m
s)

Fig. 7: Latency in the Storm+HTM phase. The lower & upper

whisker represents the 2 & 98 percentile.

Fig. 8 shows the results of deployment for Indy500 with 33

cars and three metrics for each car for end-to-end solutions.

Under OPT-N2, 99% percent of records can be processed less

than 50 ms, 99.9% percent of records can be processed in less

13

20 40 60 80 100
Percentage

La
te

nc
y(

m
s)

OPT-N1 OPT-N2 OPT-N4

Fig. 8: Cumulative distribution function of latency illustrates

Service Level Objective of Latency. Deploy strategy denoted

as OPT-N# , where OPT is the HTM.Java module optimized

version, # is number of worker nodes.

than 110 ms, with the average latency of 21 ms. The OPT

threading models of HTM.java enable our proposed systems

to process IndyCar data streams in real-time, at the data arrival

rate in the range of [80,90] ms as shown in Fig. 5. Note that the

latency increases with respect to the cumulative distribution

function shift, especially when fewer resources are allocated.

However, with the optimizations on HTM.java module, we

can observe that the deployment with limited resource, OPT-

N1 (on single node), still achieves decent SLO of latency at

the time range of the average data arrival interval.

D. Anomaly Detection Evaluation

1) Anomaly Annotations: In order to evaluate the effective-

ness of the anomaly detection system, the ground truth of the

anomalies are needed. However, to make accurate annotations

on millions of data instances is difficult if not impossible.

Moreover, the purpose of our system is to help to discover

novel anomalies that are previously unknown.

We adopt a partial annotation approach on the IndyCar

dataset where only some known events are selected to be

labeled as anomalies. We focus on the following three events.

1. Crash: From the video replay of the race, there are 7 crashes

in total found during the Indy500 racing event. Furthermore,

by analysis on the flag information recorded in the timing and

scoring logs, the time window when the crashes happened can

be identified. 2. PitStop:Like the event of crash, pit stops are

events that can be identified by the video replay and timing and

scoring logs. Usually, a pit stop lasts for 40 seconds of which

SPEED will be zero for 14 seconds. There are 6 pit stops for

each car in average. 3. GreenFlagUp: When a crash happens,

the race turns into a controlled mode to keep safe. All the cars

follow the rules to slow down and wait for the signal of green

flag. Then, the cars speed up back to the normal racing speed.

All these three type events accompany large variations of the

metrics of the racing cars, thus, many anomalies.

Table. III presents an example of the annotation results for

Car-1. There are 6 pit-stops and 7 crashes during the whole

race. We use an time window about 30 seconds centered with

the event Time. The detection algorithm which detects as many

as anomalies in the left side of the time window should be

TABLE III: Annotation of Known Events for Car1

PitStop Crash GreenFlagUp
ID Time ID Time ID Time

1 16:45:40 car-33,30 16:56:03 1 16:23:00
2 17:01:01 car-10 17:11:26 2 17:09:06
3 17:26:43 car-13 17:23:07 3 17:19:14
4 17:51:36 car-18 18:17:52 4 17:31:03
5 18:15:48 car-3 18:29:26 5 18:28:27
6 18:57:40 car-24 18:40:55 6 18:39:22

car-14 19:10:18 7 18:50:45

scored higher. Anomalies reported outside the time windows

are either false positives or UNKNOWN events.

2) Accuracy of HTM algorithm: Fig. 10 demonstrates the

anomaly detection result of HTM on IndyCar dataset. For

the annotated three types of known events, it shows that

detection on SPEED and RPM are accurate. Missing data at

16:50:15 and 17:27:00 can be observed in the figure but HTM

shows stable performance when the missing data present.

Some false negatives exist in the results for each metric, e.g.,

the GreenFlagUp event between 17:17 and 17:22 in RPM

result. A fine-tuned anomaly threshold would deliver better

accuracy and keep the balance between false positives and

false negatives, which is one of our future work.

THROTTLE control is a critical technique to operate a

racing car at its limits. While single metric with THROTTLE

performs not as good as the other two metrics in the task

of detecting anomalies of the known event types, it detects

more subtle anomalies that the other two metrics failed to

report. As in Fig. 10, UNKNOWN-G matches UNKNOWN-

H while RPM fails, UNKOWN-C reports an area that both

RPM and SPEED contains visible abnormal patterns. This

evidence suggests that the other UNKOWN anomalies detected

by THROTTLE might provide valuable information.

3) Case Study of Crash Event: Fig. 11 demonstrates the

anomaly detection results on six metrics and is centered around

a Crash event for car-13. Within the vertical red time window

of the Crash event, all metrics can report a few anomalies.

SPEED, RPM, and STEERING response mostly after the

event, which indicates that the variance of the behavior of these

metrics is the results of the crash. GEAR is not as sensitive

as the other metrics. THROTTLE and BRAKE are interesting

that some anomalies are detected at the left side of the center,

before the collision. To verify these (unknown) anomalies as

a means to provide a warning to severe events need further

collaboration with domain experts on the IndyCar data.

V. RELATED WORK

Anomaly detection in time-series is a heavily studied area

of data science and machine learning [7], [11], but a vast

majority of anomaly detection methods, both supervised (e.g.

SVM and decision trees) and unsupervised (e.g. clustering),

are for batch data processing. In practice, statistical techniques

are used and they are computationally lightweight: sliding

thresholds, outlier tests such as extreme studentized deviate

(ESD or Grubbs) [22] and k-sigma, changepoint detection,

statistical hypotheses testing, and exponential smoothing such

14

Fig. 9: Distribution of Anomaly Detection Processing Time. Car13 SPEED. Anomaly Likelihood threshold set to 0.5. Red dot

scatter plot is the processing time. Red triangle are anomalies.

Fig. 10: Anomaly Detection Result for Car-1. Timeline for three metrics, SPEED, RPM and THROTTLE. The horizontal

green/yellow bar represents the flag status during the race. Vertical bars represent the three anomalies types from annotations,

including GreenFlagUp, PitStop, and Crash. System report anomalies are red triangles. Dotted circles indicate UNKNOWN

anomalies. Only results from beginning to 17:54:00 are presented due to limit of space. Anomaly Likelihood threshold set to

0.5.5.

Fig. 11: Anomaly Detection Result for Car-13 on Crash Event. Six metrics, SPEED, RPM, THROTTLE, BRAKE, GEAR and

STEERING are included. Centered vertical red bar is the crash event of Car-13. Horizontal green/yellow bar represents the

flag status during the race. Anomaly Likelihood threshold set to 0.2.

15

as Holt-Winters [12]. Most of these techniques focus on

spatial anomalies, limiting their usefulness in applications with

temporal dependencies.

Algorithms for real-time anomaly detection include HTM,

Skyline, Twitter ADVec, KNN CAD, Relative Entropy, Win-

dowed Gaussian. NAB benchmark shows that HTM is one

of the state-of-the-art algorithms that provide stable and high

accuracy. We also tested three other real-time anomaly de-

tection algorithms, namely online Bayesian Changepoint [3],

Random Cut Forest, and EXPected Similarity Estimation [23].

Both HTM and EXPoSE have achieved good discover rate.

Collective anomaly detection is another important area in

which a collection of related data instances is anomalous

concerning the entire dataset [28] [9]. Multimodal anomaly

detection detects from multiple sources of data stream [8].

In this paper, we focus on contextual anomaly detection

and report correlations among multiple metrics. Investigating

collective anomaly detection with multi metrics will be our

future work.

VI. CONCLUSIONS

Real-time anomaly detection on Indy500 racing event pro-

vides an interesting and challenging problem on machine

learning algorithms and distributed systems. The heteroge-

neous streams with high velocity puts stringent time con-

straints on the processing time and require a scalable sys-

tem for HTM neural networks on anomaly detection. We

investigate the SLO requirements and reduce the latency for

streaming data analysis. We show under different deployment

strategies, our proposed distributed system is capable to run

complex anomaly detection algorithm in real-time. The val-

idation shows that HTM provides stable performance and is

promising in detecting anomalies over high speed streaming

data. We will collaborate with domain experts to leverage the

experiences and findings in this work and make it a useful tool

for anomaly detection in automotive applications. We made

our source code available online at https://github.com/DSC-

SPIDAL/IndyCar.

ACKNOWLEDGMENT

We gratefully acknowledge support from the Intel Parallel

Computing Center (IPCC) grant, NSF CIF-DIBBS 143054,

EEC 1720625 and IIS 1838083 Grants. We appreciate the

support from IU PHI, FutureSystems team and ISE Modelling

and Simulation Lab.

REFERENCES

[1] Hierarchical Temporal Memory implementation in Java.
https://github.com/numenta/htm.java/. [Online; accessed 1-Mar-2019].

[2] IndyCar Demo. http://indycar.demo.2.s3-website-us-east-
1.amazonaws.com/. [Online; accessed 15-Apr-2019].

[3] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.
arXiv preprint arXiv:0710.3742, 2007.

[4] S. Ahmad and J. Hawkins. Properties of sparse distributed represen-
tations and their application to hierarchical temporal memory. arXiv
preprint arXiv:1503.07469, 2015.

[5] S. Ahmad and J. Hawkins. How do neurons operate on sparse distributed
representations? A mathematical theory of sparsity, neurons and active
dendrites. arXiv preprint arXiv:1601.00720, 2016.

[6] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised real-time
anomaly detection for streaming data. Neurocomputing, 262:134–147,
Nov. 2017.

[7] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem,
E. Ahmed, and M. Imran. Real-time big data processing for anomaly
detection: A Survey. International Journal of Information Management,
Sept. 2018.

[8] T. Banerjee, G. Whipps, P. Gurram, and V. Tarokh. Sequential event
detection using multimodal data in nonstationary environments. In 2018
21st International Conference on Information Fusion (FUSION), pages
1940–1947. IEEE, 2018.

[9] L. Bontemps, J. McDermott, and N.-A. Le-Khac. Collective anomaly
detection based on long short-term memory recurrent neural networks.
In International Conference on Future Data and Security Engineering,
pages 141–152. Springer, 2016.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, 36(4), 2015.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[12] C. Chatfield. The Holt-winters forecasting procedure. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 27(3):264–279,
1978.

[13] X. Gao, E. Ferrara, and J. Qiu. Parallel clustering of high-dimensional
social media data streams. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 323–332.
IEEE, 2015.

[14] D. George and J. Hawkins. A hierarchical Bayesian model of invariant
pattern recognition in the visual cortex. In Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005., volume 3,
pages 1812–1817. IEEE, 2005.

[15] Guennadi Moukine. Mikhail Grachev: data Is the winning force in motor
racing. https://motorsport.acronis.com/articles/en/mikhail-grachev-data-
winning-force-motor-racing. [Online; accessed 1-Mar-2019].

[16] J. Hawkins and S. Ahmad. Why neurons have thousands of synapses, a
theory of sequence memory in neocortex. Frontiers in neural circuits,
10:23, 2016.

[17] S. Kamburugamuve and G. Fox. Survey of distributed stream processing.
[18] Y. Kataoka and D. Junkins. Mining Muscle Use Data for Fatigue

Reduction in IndyCar. Mar. 2017.
[19] A. Lavin and S. Ahmad. Evaluating real-time anomaly detection

algorithms–the numenta anomaly benchmark. In 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA),
pages 38–44. IEEE, 2015.

[20] S. Lee, H. Kim, D.-k. Hong, and H. Ju. Correlation analysis of mqtt
loss and delay according to qos level. 2013.

[21] Lynnette Reese. Telemetry in Auto Racing.
https://www.mouser.com/applications/automotive-racing-telemetry/.
[Online; accessed 1-Mar-2019].

[22] B. Rosner. Percentage points for a generalized ESD many-outlier
procedure. Technometrics, 25(2):165–172, 1983.

[23] M. Schneider, W. Ertel, and F. Ramos. Expected similarity estimation for
large-scale batch and streaming anomaly detection. Machine Learning,
105(3):305–333, 2016.

[24] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy. Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages
147–156, New York, NY, USA, 2014. ACM. event-place: Snowbird,
Utah, USA.

[25] A. Vivmond. Utilizing the HTM algorithms for weather forecasting and
anomaly detection. Master’s thesis, The University of Bergen, 2016.

[26] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng. A Distributed
Anomaly Detection System for In-Vehicle Network Using HTM. IEEE
ACCESS, 6:9091–9098, 2018.

[27] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-tolerant Streaming Computation at Scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New York, NY, USA,
2013. ACM. event-place: Farminton, Pennsylvania.

[28] Y. Zheng, H. Zhang, and Y. Yu. Detecting collective anomalies from
multiple spatio-temporal datasets across different domains. In Proceed-
ings of the 23rd SIGSPATIAL international conference on advances in
geographic information systems, page 2. ACM, 2015.

16

