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Abstract—Multidimensional Scaling (MDS) is a dimension
reduction method for information visualization, which is set
up as a non-linear optimization problem. It is applicable to
many data intensive scientific problems including studies of DNA
sequences but tends to get trapped in local minima. Deterministic
Annealing (DA) has been applied to many optimization problems
to avoid local minima. We apply DA approach to MDS problem
in this paper and show that our proposed DA approach improves
the mapping quality and shows high reliability in a variety of
experimental results. Further its execution time is similar to
that of the un-annealed approach. We use different data sets
for comparing the proposed DA approach with both a well
known algorithm called SMACOF and a MDS with distance
smoothing method which aims to avoid local optima. Our
proposed DA method outperforms SMACOF algorithm and the
distance smoothing MDS algorithm in terms of the mapping
quality and shows much less sensitivity with respect to initial
configurations and stopping condition. We also investigate various
temperature cooling parameters for our deterministic annealing
method within an exponential cooling scheme.

I. INTRODUCTION

The recent explosion of publicly available biology gene

sequences, chemical compounds, and various scientific data

offers an unprecedented opportunity for data mining. Among

many data mining algorithms, dimension reduction is a useful

tool for information visualization of such high-dimensional

data to make data analysis feasible for such vast volume and

high-dimensional scientific data. It facilitates the investigation

of unknown structures of high dimensional data in three (or

two) dimensional visualization.

Among the known dimension reduction algorithms, such

as Principal Component Analysis (PCA), Multidimensional

Scaling (MDS) [1], [2], Generative Topographic Mapping

(GTM) [3], and Self-Organizing Maps (SOM) [4], to name

a few, multidimensional scaling has been extensively studied

and used in various real application area, such as biology [5],

stock market analysis [6], computational chemistry [7], and

breast cancer diagnosis [8].

In contrast to other algorithms, like PCA, GTM, and SOM,

which generally construct a low dimensional configuration

based on vector information, MDS aims to construct a new

mapping in target dimension on the basis of pairwise proximity

(typically dissimilarity or distance) information so that it does

not require feature vector information of the real application

data to acquire lower dimensional mapping of the given data.

Hence, MDS is really useful for data visualization of a certain

type of data which is impossible to represent by feature vectors

but have pairwise dissimilarity, such as biological sequence

data. MDS, of course, is also applicable to the data represented

by feature vectors as well.

MDS is a non-linear optimization approach constructing a

lower dimensional mapping of high dimensional data with

respect to the given proximity information based on objective

functions, namely STRESS [9] or SSTRESS [10]. Below

equations are the definition of STRESS (1) and SSTRESS (2):

σ(X) = ∑
i< j≤N

wi j(di j(X)− δi j)
2 (1)

σ2(X) = ∑
i< j≤N

wi j [(di j(X))2− (δi j)
2]2 (2)

where 1 ≤ i < j ≤ N, wi j is a weight value (wi j ≥ 0),
di j(X) is a Euclidean distance between mapping results of
xi and x j, and δi j is the given original pairwise dissimilarity
value between xi and x j. SSTRESS is adopted by ALSCAL

algorithm (Alternating Least Squares Scaling) [10], and using

squared Euclidean distances results in simple computation.

A more natural choice could be STRESS which is used by

SMACOF [11] and Sammon’s mapping [12].

Due to non-linear property of MDS problem, an optimiza-

tion method called iterative majorization is used to solve MDS

problem [11]. However, iterative majorization method is a type

of Expectation-Maximization (EM) approach [13], and it is

well understood that EM method suffers from local minima

problem although EM method is widely applied to many

optimization problem. In order to overcome local minima

issue, we have applied a robust optimization method called

Deterministic Annealing (DA) [14], [15] to the MDS problem.

A key feature of the DA algorithm is to endeavour to

find global optimum without trapping local optima in deter-

ministic way [14] instead of stochastical random approach,

which results in long running time, as in Simulated Annealing

(SA) [16]. In a physics language, DA uses mean field approx-

imation to the statistical physics integrals.

In Section II, we discuss briefly the background and related

work. Then, the proposed DA MDS algorithm is explained

in Section III. Section IV illustrates performance of the pro-

posed DA MDS algorithm compared to other MDS algorithms

followed by conclusion in Section V.
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II. BACKGROUND AND RELATED WORK

A. Avoiding Local Optima in MDS

SMACOF is a quite useful algorithm, since it will mono-

tonically decrease the STRESS criterion [11]. However, the

well-known problem of the gradient descent approach is to be

trapped in a local minima due to its hill-climbing approach.

Stochastic optimization approaches, such as simulated anneal-

ing (SA) [16] and genetic algorithms (GA) [17], have been

used for many optimization problems including MDS prob-

lem [18], [19] in order to avoid local optima, but stochastic

algorithms are well-known to suffer from long running time

due to their Monte Carlo approach. In addition to stochastic

algorithms, distance smoothing [20] and tunneling method [21]

for MDS problem were proposed to avoid local optima in a

deterministic way.

Recently, Ingram et al. introduced a multilevel algorithm

called Glimmer [22] which is based on force-based MDS algo-

rithm with restriction, relaxation, and interpolation operators.

Glimmer shows less sensitivity to initial configurations than

GPU-SF subsystem, which is used in Glimmer [22], due to the

multilevel nature. In Glimmer’s paper [22], however, SMA-

COF algorithm shows better mapping quality than Glimmer.

Also, the main purpose of Glimmer is to achieve speed up

with less cost of quality degrade rather than mapping quality

improvement. In contrast, this paper focuses on optimization

method which improves mapping quality in deterministic

approach. Therefore, we will compare the proposed algorithm

to other optimization algorithms, i.e. SMACOF and Distance

Smoothing method, in Section IV.

B. Deterministic Annealing Approach (DA)

Since the simulated annealing (SA) was introduced by

Kirkpatrick et al. [16], people widely accepted SA and other

stochastic maximum entropy approach to solve optimization

problems for the purpose of finding global optimum instead

of hill-climbing deterministic approaches. SA is a Metropolis

algorithm [23], which accepts not only the better proposed

solution but even the worse proposed solution than the previ-

ous solution based on a certain probability which is related

to computational temperature (T ). Also, it is known that

Metropolis algorithm converges to an equilibrium probability

distribution known as Gibbs probability distribution. If we

denote H (X) as the energy (or cost) function and F as a

free energy, then Gibbs distribution density is following:

PG(X) = exp

(
− 1
T

(H (X)−F )

)
, (3)

F = −T log
∫
exp

(
− 1
T

H (X)

)
dX . (4)

and the free energy (F ), which is a suggested objective

function of SA, is minimized by the Gibbs probability density

PG. Also, free energy F can be written as following:

FP =< H >P −TS (P) (5)

≡
∫
P(X)H (X)dX+T

∫
P(X) logP(X)dX (6)

where < H >P represents the expected energy and S (P)
denotes entropy of the system with probability density P. Here,

T is used as a Lagrange multiplier to control the expected

energy.With high temperature, the problem space is dominated

by the entropy term which make the problem space become

smooth so it is easy to move further. As temperature is getting

cooler, however, the problem space is gradually revealed as

the landscape of the original cost function which limits the

movement on the problem space. To avoid trapped in local

optima, people usually start with high temperature and slowly

decrease temperature in the process of finding solution.

SA relies on random sampling with Monte Carlo method

to estimate the expected solution, e.g. expected mapping in

target dimension for MDS problem, so that it suffers from long

running time. Deterministic annealing (DA) [14], [15] can be

thought of as an approximation algorithm of SA which tries to

keep the merit of SA. DA [14], [15] method actually tries to

calculate the expected solution exactly or approximately with

respect to the Gibbs distribution as an amendment of SA’s

long running time, while it follows computational annealing

process using Eq. (5), which T decreases from high to low.

DA method is used for many optimization problems, in-

cluding clustering [14], [15], pairwise clustering [24], and

MDS [25], to name a few. Since it is intractable to calculate

F in Eq. (4) exactly, an approximation technique called mean

field approximation is used for solving MDS problem by DA

in [25], in that Gibbs distribution PG(X) is approximated by
a factorized distribution with density

P0(X |Θ) =
N

∏
i=1

qi(xi|Θi). (7)

where Θi is a vector of mean field parameter of xi and
qi(xi|Θi) is a factor serves as a marginal distribution model
of the coordinates of xi. To optimize parameters Θi, Klock
and Buhmann [25] minimized Kullback-Leibler (KL) diver-

gence between the approximated density P0(X) and the Gibbs
density PG(X) through EM algorithm [13]. Although, DA-
MDS [25] shows the general approach of applying DA to

MDS problem, it is not clearly explained how to solve MDS.

Therefore, we will introduce the alternative way to utilize DA

method to MDS problem in Section III.

III. DETERMINISTIC ANNEALING SMACOF

If we use STRESS (1) objective function as an expected

energy (cost) function in Eq. (5), then we can define HMDS

and H0 as following:

HMDS =
N

∑
i< j≤N

wi j(di j(X)−δi j)
2 (8)

H0 =
N

∑
i=1

(xi− µ i)
2

2
(9)

where H0 corresponds to an energy function based on a

simple multivariate Gaussian distribution and µ i represents
the average of the multivariate Gaussian distribution of i-th
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point (i = 1, . . . ,N) in target dimension (L-dimension). Also,
we define P0 and F0 as following:

P0(X) = exp

(
− 1
T

(H0−F0)

)
, (10)

F0 = −T log
∫
exp

(
− 1
T

H0

)
dX = −T log(2πT )L/2

(11)

We need to minimize FMDS(P
0) =< HMDS−H0 > +F0(P

0)
with respect to µ i. Since − < H0 > +F0(P

0) is independent
to µ i, only < HMDS > part is necessary to be minimized with
regard to µ i. If we apply < xixi >= µ iµ i+TL to < HMDS >,
then < HMDS > can be deployed as following:

< HMDS > =
N

∑
i< j≤N

wi j(< ‖xi− x j‖ > −δi j)
2 (12)

=
N

∑
i< j≤N

wi j(
√
‖µ i− µ j‖2+2TL− δi j)

2 (13)

≈
N

∑
i< j≤N

wi j(‖µ i− µ j‖+
√
2TL− δi j)

2 (14)

where ‖a‖ is Norm2 of a vector a. Eq. (13) can be approxi-
mated to Eq. (14), since the bigger T , the smaller ‖µ i− µ j‖
and the smaller T , the bigger ‖µ i− µ j‖.
In [25], Klock and Buhmann tried to find an approximation

of PG(X) with mean field factorization method by minimiz-
ing Kullback-Leibler (KL) divergence using EM approach.

The found parameters by minimizing KL-divergence between

PG(X) and P0(X) using EM approach are essentially the
expected mapping in target dimension under current problem

space with computational temperature (T ).

In contrast, we try to find expected mapping, which min-

imize FMDS(P
0), directly with new objective function (σ̂ )

which is applied DA approach to MDS problem space with

computational temperature T by well-known EM-like MDS

solution, called SMACOF [11]. Therefore, as T varies, the

problem space also varies, and SMACOF algorithm is used

to find expected mapping under each problem space at a

corresponding T . In order to apply SMACOF algorithm to

DA method, we substitute the original STRESS equation (1)

with Eq. (14). Note that µ i and µ j are the expected mappings
we are looking for, so we can consider ‖µ i−µ j‖ as di j(XT ),
where XT represents the embedding results in L-dimension at

T and di j means the Euclidean distance between mappings of

point i and j. Thus, the new STRESS (σ̂ ) is following:

σ̂ =
N

∑
i< j≤N

wi j(di j(XT )+
√
2TL− δi j)

2 (15)

=
N

∑
i< j≤N

wi j(di j(XT )− δ̂i j)
2 (16)

with δ̂i j defined as following:

δ̂i j =

{
δi j−

√
2TL if δi j >

√
2TL

0 otherwise
(17)

Algorithm 1 DA-SMACOF algorithm

Input: ∆ and α
1: Compute T0 and ∆̂0 = [δ̂i j] based on Eq. (18).
2: Generate random initial mapping X0.

3: k⇐ 0;
4: while Tk ≥ Tmin do
5: Xk+1 = output of SMACOF with ∆̂k and X k. Xk is used

for initial mapping of the current SMACOF running.

6: Cool down computational Temperature Tk+1 = αTk
7: Update ∆̂k+1 w.r.t. Tk+1.
8: k⇐ k+1;
9: end while

10: X = output of SMACOF based on ∆ and X k.
11: return: X ;

In addition, T is a lagrange multiplier so it can be thought of

as T = T̂ 2, then
√
2TL= T̂

√
2L and we will use T instead of

T̂ for the simple notation. Thus, Eq. (17) can be written as

following:

δ̂i j =

{
δi j−T

√
2L if δi j > T

√
2L

0 otherwise.
(18)

Now, we can apply SMACOF to find expected mapping with

respect to new STRESS (16) which is based on computational

temperature T . The MDS problem space could be smoother

with higher T than with lower T , since T represents the portion

of entropy to the free energy F as in Eq. (5). Generally, DA

approach starts with high T and gets cool down T as time

goes on, like physical annealing process. However, if starting

computational temperature (T0) is very high which results in

all δ̂i j become ZERO, then all points will be mapped at origin
(O). Once all mappings are at the origin, then the Guttman

transform is unable to construct other mapping except the

mapping of all at the origin, since Guttman transform does

multiplication iteratively with previous mapping to calculate

current mapping. Thus, we need to calculate T0 which makes

at least one δ̂i j is bigger than ZERO, so that at least one of
the points is not located at O.

With computed T0, the ∆̂0 = [δ̂i j] can be calculated, and we
are able to run SMACOF algorithm with respect to Eq. (16).

After new mapping generated with T0 by SMACOF algorithm,

say X0, then we will cool down the temperature in exponential

way, like Tk+1 = αTk, and keep doing above steps until T
becomes too small. Finally, we set T = 0 and then run SMA-
COF by using the latest mapping as an initial mapping with

respect to original STRESS (1). We will assume the uniform

weight ∀wi j = 1 where 0< i< j ≤ N and it is easy to change
to non-uniform weight. The proposed deterministic annealing

SMACOF algorithm, called DA-SMACOF, is illustrated in

Alg. 1.

IV. EXPERIMENTAL ANALYSIS

For the performance analysis of the proposed deterministic

annealing MDS algorithm, called DA-SMACOF, we would
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Fig. 1. The normalized STRESS comparison of iris data mapping results
in 2D space. Bar graph illustrates the average of 50 runs with random
initialization and the corresponding error bar represents the minimum and
maximum of the normalized STRESS value of SMACOF, MDS-DistSmooth
with different smoothing steps (s = 100 and s = 200) (DS-s100 and -s200
hereafter for short), and DA-SMACOF with different cooling parameters
(α = 0.9, 0.95, and 0.99) (DA-exp90,-exp95, and -exp99 hereafter for short).
The x-axis is the threshold value for the stopping condition of iterations (10−5

and 10−6).

like to examine DA-SMACOF’s capability of avoiding lo-

cal optima in terms of objective function value (normalized

STRESS in (19)) and the sensitivity of initial configuration

by comparing with original EM-like SMACOF algorithm and

MDS by Distance Smoothing [20] (MDS-DistSmooth here-

after for short) which tries to find global optimum mapping.

We have tested above algorithms with many different data

sets, including well-known benchmarking data sets from UCI

machine learning repository1 as well as some real application

data, such as chemical compound data and biological sequence

data, in order to evaluate the proposed DA-SMACOF.

Since MDS-DistSmooth requires the number of smoothing

steps which affects to the the degree of smoothness and cooling

parameter (α) of computational temperature (T ) affects the an-
nealing procedure in DA-SMACOF, we examine two different

number of smoothing step numbers (s = 100 and s = 200)
for MDS-DistSmooth and three different cooling parameters

(α = 0.9, 0.95, and 0.99) for DA-SMACOF algorithm, as well.
(Hereafter, MDS-DistSmooth with smoothing steps s = 100
and s = 200 are described by DS-s100 and DS-s200 respec-
tively, and DA-SMACOF with temperature cooling parameters

α = 0.9, 0.95, and 0.99 are represented by DA-exp90, DA-
exp95, and DA-exp99, correspondingly.)We also examine two

different thresholds for the stopping condition, i.e. ε = 10−5

and ε = 10−6, for tested algorithms.
To compare mapping quality of the proposed DA-SMACOF

with SMACOF and MDS-DistSmooth, we measure the nor-

malized STRESS which substitutes wi j in (1) for 1/∑i< j δ
2
i j

1UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/

like following:

σ(X) = ∑
i< j≤N

1

∑i< j δ
2
i j

(di j(X)− δi j)
2 (19)

in that the normalized STRESS value denotes the relative

portion of the squared distance error rates of the given data

set without regard to scale of δi j.

A. Iris Data

The iris data2 set is very well-known benchmarking data

set for data mining and pattern recognition communities. Each

data item consists of four different real values (a.k.a. 4D real-

valued vector) and each value represents an attribute of each

instance, such as length or width of sepal (or petal). There

are three different classes (Iris Setosa, Iris Versicolour, and

Iris Virginica) in the iris data set and each class contains 50

instances, so there are total 150 instances in the iris data set.

It is known that one class is linearly separable from the other

two, but the remaining two are not linearly seperable from

each other.

In Fig. 1, The mapping quality of the constructed con-

figurations of iris data by SMACOF, MDS-DistSmooth, and

DA-SMACOF is compared by the average, the minimun,

and the maximum of normalized STRESS values among 50

random-initial runnings. The proposed DA-SMACOF with all

tested cooling parameters, including quite fast cooling param-

eter (α = 0.9), outperforms SMACOF and MDS-DistSmooth
in Fig. 1 except DS-s200 case with ε = 10−6. Although DS-
s200 with ε = 10−6 is comparable to DA-SMACOF results,
DS-s200 takes almost 3 times longer than DA-exp95 with

ε = 10−6 which shows more consistent result than DS-s200.
Numerically, DA-exp95 improves mapping quality 57.1%
and 45.8% of SMACOF results in terms of the average of
STRESS values with ε = 10−5 and ε = 10−6, correspondingly.
DA-exp95 shows better mapping quality about 43.6% and
13.2% than even DS-s100, which is the algorithm to find
global optimum, with ε = 10−5 and ε = 10−6.
In terms of sensitivity to initial configuration, SMACOF

shows very divergent STRESS value distribution for both

ε = 10−5 and ε = 10−6 cases in Fig. 1, which means that
SMACOF is quite sensitive to the initial configuration (a.k.a.

easy to be trapped in local optima). In addition, MDS-

DistSmooth also shows relatively high sensitivity to the initial

configuration with the iris data set although the degree of

divergence is less than SMACOF algorithm. In contrast to

other algorithms, the proposed DA-SMACOF shows high

consistency without regard to initial setting which we could

interprete as it is likely to avoid local optima. Since it is well-

known that the slow cooling temperature is necessary to avoid

local optima, we expected that DA-exp90 might be trapped in

local optima as shown in Fig. 1. Although DA-exp90 cases

show some variations, DA-exp90 cases still show much better

results than SMACOF and MDS-DistSmooth except DS-s200

2Iris Data set, http://archive.ics.uci.edu/mi/datasets/Iris
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Fig. 2. The 2D median output mappings of iris data with SMACOF (a), DS-s100 (b), and DA-exp95 (c), whose threshold value for the stopping condition
is 10−5. Final normalized STRESS values of (a), (b), and (c) are 0.00264628, 0.00208246, and 0.00114387, correspondingly.

with ε = 10−6 case. In fact, the standard deviation of DA-
exp95 with ε = 10−5 result is 1.08×10−6 and DA-exp99 with
ε = 10−5 and DA-exp95/exp99 with ε = 10−6 shows ZERO
standard deviation in terms of STRESS values of 50 random-

initial runs. We can also note that difference of DA-SMACOF

results between ε = 10−5 and ε = 10−6 is negligible with
the iris data, whereas the average of SMACOF and MDS-

DistSmooth (DS-s100) with ε = 10−5 is about 35.5% and
81.6% worse than corresponding ε = 10−6 results.
Fig. 2 illustrates the difference of actual mapping outputs

among SMACOF, MDS-DistSmooth, and DA-SMACOF. All

of the mappings are the median results of stopping condition

with 10−5 threshold value. The mapping in Fig. 2a is the 2D
mapping result of median valued SMACOF, and Fig. 2b repre-

sents the median result of MDS-DistSmooth. Three mappings

in Fig. 2 are a little bit different to one another, and clearer

structure differentiation between class 1 and class 2 is shown

at Fig. 2c which is the median STRESS valued result of DA-

SMACOF.

B. Chemical Compound Data

The second data set is chemical compound data with 333

instances represented by 155 dimensional real-valued vectors.

For the given original dissimilarity (∆), we measure Euclidean
distance of each instance pairs based on feature vectors as well

as the iris data set.

Fig. 3 depicts the average mapping quality of 50 runs

for 333 chemical compounds mapping results with regard to

different experimental setups as in the above. For the chemical

compound data set, all experimented results of the proposed

DA-SMACOF (DA-exp90, DA-exp95, and DA-exp99) show

the superior performance to SMACOF and MDS-DistSmooth

with both ε = 10−5 and ε = 10−6 stopping conditions. In
detail, the average STRESS of SMACOF is 2.50 and 1.88
times larger than corresponding DA-SMACOF results with

ε = 10−5 and ε = 10−6 threshold, and the average STRESS
of MDS-DistSmooth shows 2.66 and 1.57 times larger than
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Fig. 3. The normalized STRESS comparison of chemical compound data
mapping results in 2D space. Bar graph illustrates the average of 50 runs with
random initialization and the corresponding error bar represents the minimum
and maximum of the normalized STRESS value of SMACOF, DS-s100 and
-s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis is the threshold
value for the stopping condition of iterations (10−5 and 10−6).

DA-SMACOF algorithm with ε = 10−5 and ε = 10−6. Further-
more, the minimum STRESS values of SMACOF and MDS-

DistSmooth experiments are larger than the average of all DA-

SMACOF results. One interesting phenomena in Fig. 3 is that

the MDS-DistSmooth shows worse performance in average

with ε = 10−5 stopping condition than SMACOF and DS-s100
shows better than DS-s200.

As similar as in Fig. 1, all SMACOF and MDS-DistSmooth

experimental results show higher divergence in terms of

STRESS values in Fig. 3 than the proposed DA-SMACOF.

On the other hand, DA-SMACOF shows much less divergence

with respect to STRESS values, especially DA-exp99 case.
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Fig. 4. The normalized STRESS comparison of breast cancer data mapping
results in 2D space. Bar graph illustrates the average of 50 runs with random
initialization and the corresponding error bar represents the minimum and
maximum of the normalized STRESS value of SMACOF, DS-s100 and -
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value for the stopping condition of iterations (10−5 and 10−6).

For the comparison between different cooling parameters,

as we expected, DA-exp90 shows some divergence and a little

bit higher average than DA-exp95 and DA-exp99, but much

less average than SMACOF. Interestingly, DA-exp95 shows

relatively larger divergence than DA-exp90 due to outliers.

However, those outliers of DA-exp95 happened rarely among

50 runs and the most of DA-exp95 running results are similar

as minimum value of corresponding test.

C. Cancer Data

The cancer data3 set is well-known data set found in UCI

Machine Learning Repository. Each data item consists of 11

columns and the first and the last column represent id-number

and class correspondingly, and the remaining 9 columns are

attribute values described in integer from 1 to 10. There are

two different classes (benign and malignant) in the cancer

data set. Originally, it contains 699 data items, we use only

683 data points which have every attribute values, since 16

items have some missing information.

Fig. 4 depicts the average mapping quality of 50 runs for

683 cancer data mapping results with regard to different exper-

imental setups as in the above. For the cancer data set, all ex-

perimented results of the proposed DA-SMACOF (DA-exp90,

DA-exp95, and DA-exp99) show the superior performance to

SMACOF and MDS-DistSmooth with ε = 10−5, and better
than SMACOF and comparable to MDS-DistSmooth with

ε = 10−6 stopping conditions. Interestingly, DA-exp99 case
shows worse results than DA-exp95 and DA-exp90 results,

although DA-exp99 case find most minimum mapping in terms

of normalized STRESS value. In detail, the average STRESS

3Breast Cancer Data set, http://archive.ics.uci.edu/mi/datasets/Breast+
Cancer+Wisconsin+(Original)
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Fig. 5. The normalized STRESS comparison of yeast data mapping results
in 2D space. Bar graph illustrates the average of 50 runs with random
initialization and the corresponding error bar represents the minimum and
maximum of the normalized STRESS value of SMACOF, DS-s100 and -
s200, and DA-exp90,DA-exp95, and DA-exp99. The x-axis is the threshold
value for the stopping condition of iterations (10−5 and 10−6).

of SMACOF is 18.6% and 11.3% worse than corresponding
DA-SMACOF results with ε = 10−5 and ε = 10−6 threshold,
and the average STRESS of MDS-DistSmooth shows 8.3%
worse than DA-SMACOF with ε = 10−5 and comparable to
DA-SMACOF withε = 10−6.
Although DA-SMACOF experimental results show some

divergence in terms of STRESS values in Fig. 4, in contrast

to Fig. 1 and Fig. 3, DA-SMACOF experimental results show

less divergence of STRESS values than SMACOF and MDS-

DistSmooth in Fig. 4.

D. Yeast Data

The yeast data4 set is composed of 1484 entities and each

entity is represented by 8 real-value attributes in addition to

the sequence name and class labels.

The normalized STRESS comparison of the yeast mapping

results by different algorithms is illustrated in Fig. 5 in terms

of the average mapping quality of 50 runs for 1484 points

mapping. DA-SMACOF shows better performance than the

other two algorithms in this experiments as same as the above

experiments. SMACOF keep showing much higher divergence

rather than DA-SMACOF with both stopping condition cases.

Also, MDS-DistSmooth shows divergent STRESS distribution

with ε = 10−5 stopping condition, but not with ε = 10−6

stopping condition. DA-SMACOF shows quite stable results

except DA-exp90 case with ε = 10−5 stopping condition,
as well as better solution. In terms of best mapping (a.k.a.

minimum normalized STRESS value), all DA-SMACOF ex-

periments obtain better solution than SMACOF and MDS-

DistSmooth, and even best result of SMACOF is worse than

the average of the proposed DA approach.

4Yeast Data set, http://archive.ics.uci.edu/mi/datasets/Yeast
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Fig. 6. The normalized STRESS comparison of metagenomics sequence
data mapping results in 2D space. Bar graph illustrates the average of 10 runs
with random initialization and the corresponding error bar of the normalized
STRESS value of SMACOF and DA-exp95. The x-axis is the threshold value
for the stopping condition of iterations (10−5 and 10−6).

E. Metagenomics Data

The last data we used for evaluation of DA-SMACOF

algorithm is a biological sequence data with respect to the

metagenomics study. Although it is hard to present a biological

sequence in a feature vector, people can calculate a dissimilar-

ity value between two different sequences by some pairwise

sequence alignment algorithms, like Smith Waterman - Gotoh

(SW-G) algorithm [26], [27] which we used in this paper.

In contrast to smaller data size as in the above tests,

metagenomics data set contains 30,000 points (sequences).

Since MDS algorithms requires O(N2) main memory, we have
to use much larger amount of memory than main memory in

a single node for running with 30,000 points. Thus, we use

distributed memory version of SMACOF algorithm [28] to run

with this metagenomics data.

Fig. 6 is the comparison between the average of 10 random

initial runs of DA-SMACOF (DA-exp95) and SMACOF with

metagenomics data set. As same as other results, SMACOF

shows a tendency to be trapped in local optima by depicting

some variation and larger STRESS values, and even the

minimum values are bigger than any results of DA-exp95. DA-

exp95 results are actually 12.6% and 10.4% improved com-
pared to SMACOF in average with ε = 10−5 and ε = 10−6,
correspondingly. As shown in Fig. 6, all of the DA-exp95

results are very similar to each other, especially when stopping

condition is ε = 10−6. In contrast to DA-SMACOF, SMACOF
shows larger variation in both stopping conditions in Fig. 6.

F. Running Time Comparison

From Section IV-A to Section IV-E, we have been analyzed

the mapping quality by comparing DA-SMACOF with SMA-

COF and MDS-DistSmooth, and DA-SMACOF outperforms

SMACOF in all test cases and outperforms or is comparable

to MDS-DistSmooth. In this section, we would like to compare

the running time among those algorithms. Fig. 7 describes the

average running time of each test case for SMACOF, MDS-

DistSmooth, and DA-exp95 with 50 runs for the tested data.

In order to make a distinct landscape in Fig. 7, we plot the

quadrupled runtime results of iris and cancer data.

In Fig. 7, all runnings are performed in sequential com-

puting with AMD Opteron 8356 2.3GHz CPU and 16GB

memory. As shown in Fig. 7, DA-SMACOF is a few times

slower than SMACOF but faster than MDS-DistSmooth in

all test cases. In detail, DA-SMACOF takes 2.8 to 4.2 times

longer than SMACOF but 1.3 to 4.6 times shorter than MDS-

DistSmooth with iris and compound data set in Fig. 7a. Also,

DA-SMACOF takes 1.3 to 2.8 times longer than SMACOF but

3.7 to 9.1 times shorter than MDS-DistSmooth with cancer

and yeast data set in Fig. 7b. For metagenomics data set with

30,000 points, we tested with 128 way parallelism by MPI ver-

sion of SMACOF and DA-SMACOF [28] and DA-SMACOF

takes only 1.36 and 1.12 times longer than SMACOF in

average. Actually, several SMACOF runs take longer than

DA-SMACOF running times, although DA-SMACOF obtains

better and reliable mapping results in Fig. 6. Interestingly, the

less deviation is shown by DA-SMACOF than other compared

algorithms in all cases with respect to running time as well as

STRESS values.

V. CONCLUSION

In this paper, the authors have proposed an MDS solution

with deterministic annealing (DA) approach, which utilize

SMACOF algorithm in each cooling step. the proposed DA

approach outperforms SMACOF and MDS-DistSmooth al-

gorithms with respect to the mapping qualities with several

different real data sets. Furthermore, DA-SMACOF exhibits

the high consistency due to less sensitivity to the initial

configurations, in contrast to SMACOF and MDS-DistSmooth

which show high sensitivity to both the initial configurations

and stopping condition. With the benefit of DA method to

avoid local optima, the proposed DA approach uses slightly

longer or comparable running time to SMACOF and shorter

running time than MDS-DistSmooth. In addition, we also

investigate different computational temperature cooling param-

eters in exponential cooling scheme and it turns out that it

shows some deviation of mapping results when we use faster

cooling parameter than necessary (like DA-exp90 case in this

paper) but DA-exp90 shows still better than or comparable

to the compared algorithms in our experiments. Also, DA-

exp95 results are very similar to or even better than DA-exp99

results although DA-exp95 takes shorter time than DA-exp99

case. In future work, we will integrate these ideas with the

interpolation technology described in [29] to give a robust

approach to dimension reduction of large datasets that scales

like O(N) rather O(N2) of general MDS methods.
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