
Supporting End-to-End Social Media Data Analysis with
the IndexedHBase Platform

Xiaoming Gao
School of Informatics and Computing,

Indiana University
201H Lindley Hall, 150 S. Woodlawn Ave.

Bloomington, IN 47405
1-812-272-6515

gao4@indiana.edu

Judy Qiu
School of Informatics and Computing,

Indiana University
201D Lindley Hall, 150 S. Woodlawn Ave.,

Bloomington, IN 47405
1- 812-855-4856

xqiu@indiana.edu

ABSTRACT
As data intensive applications evolve, many research projects
involving Big Data require efficient extraction and analysis of
specific data subsets, rather than the whole dataset. Social media
data analysis is one such example. While social media platforms
such as Twitter provide tremendous data about all kinds of social
activities, most research analyses focus on specific social events,
such as presidential elections or protests. In order to support the
requirements of such research use cases, the storage platform needs
to provide not only a scalable solution for the overall large dataset,
but also mechanisms for efficiently querying the target subsets and
applying post-query analyses. This paper introduces
IndexedHBase, a storage platform specially designed to support
end-to-end analysis of social media data. IndexedHBase uses
HBase as the storage substrate, and provides a customizable
indexing framework to facilitate queries about data subsets related
to different social events. Beyond the queries, IndexedHBase can
be integrated with parallel processing runtimes such as Hadoop and
Twister to support sophisticated analysis of the query results
through user-defined MapReduce functions. We describe the
architecture and components of IndexedHBase, and demonstrate its
effectiveness and efficiency by reproducing the end-to-end analysis
of a published research project about the 2010 US midterm
elections. We then extend this to a data subset about the 2012
presidential election, which serves to demonstrate that
IndexedHBase correctly generates results that match with
independent evaluations. Furthermore, our parallel implementation
for the most time-consuming analysis step can achieve a processing
speed that is tens to hundreds of times faster compared with a
baseline sequential implementation in R for a distributed setup.

Categories and Subject Descriptors
H.2 [Database Management]: Systems.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation.

Keywords
Social Media Data Analysis, IndexedHBase, Customizable
Indexing Framework, Parallel Analysis.

1. INTRODUCTION
Motivated by the widespread adoption of social media platforms
such as Twitter [31], investigating social activities through analysis
of large scale social media datasets has been a popular research
topic in recent years. Compared with previous data intensive
computing problems, social media data analysis demonstrates a
special characteristic: while the size of the whole social media
dataset is huge, most analyses only focus on data subsets related to
specific social events, or special aspects of social activities, such as
congressional elections [8, 11], protest events [6, 7], and social link
creation [33]. For such research scenarios, limiting analysis
computation to the exact scope of the target subsets is important
both in terms of efficiency and better resource utilization,
especially in multi-task computing environments. Therefore,
mechanisms for quickly locating the relevant data subsets are
needed on the data storage and analysis platforms.

Another important feature about social data analysis is that the
analysis workflow normally consists of multiple stages, and each
stage may apply a diversity of algorithms to process the target data
subsets, as illustrated in Figure 1. Implementations of certain
algorithms may demonstrate different processing patterns.
Therefore, to achieve efficient execution of the whole workflow,
the analysis platform must adapt to different processing
frameworks to complete various steps from these stages.

Figure 1. Stages in a social media data analysis process.
As a partial solution to these challenges, existing systems such as
Eagle-Eyed-Elephant (E3) [15] and Hadoop++ [12] support
efficient selection, aggregation, and join queries by building
various indices over datasets stored in Hadoop Distributed File
System (HDFS) [27]. However, queries supported by these systems
cannot cover an end-to-end solution for the abovementioned
scenarios, which may involve sophisticated mining and
visualization processes over the query results. Moreover, the
storage solution of HDFS does not support efficient random access
of social updates (e.g. Twitter tweets), which is a basic requirement
in many social data analysis projects.

In pursuit of a more complete solution, we introduce IndexedHBase
[17], a storage platform that is specially designed for carrying out
end-to-end social media data analysis. IndexedHBase has been
used to serve the Truthy [18] social data observatory, and our
previous work in [17] has demonstrated its scalability and

efficiency in handling Truthy queries. This paper extends our
existing work and makes the following contributions:

(1) An extended architecture of IndexedHBase, which not only
encapsulates efficient indexing and querying mechanisms, but
can also be integrated with various parallel processing
frameworks such as Hadoop [3] and Twister [14] to support
sophisticated analysis of the query results through user-
defined MapReduce functions.

(2) We provide implementations of two parallel algorithms that
are generally useful for many social media data analysis
processes. The first one is for mining related information
about specific social activities, and involves processing of
both original and index data. The second deals with
visualization of query results that can be represented by a
graph structure.

(3) A demonstration is given of the effectiveness and efficiency
of IndexedHBase by reproducing the end-to-end analysis
process from a published research project about political
polarization [9], and further extending it to another data subset
about the 2012 US presidential election. We validate our
solution by comparing it with the published results, and
investigate the scalability of our parallel program compared
with a baseline implementation in R [29].

The rest of this paper is organized as follows. Section 2 describes
the architecture and components of IndexedHBase, as well as its
application in Truthy. Section 3 presents our implementations on
IndexedHBase for reproducing an end-to-end analysis process
about political polarization. Section 4 discusses related work.
Section 5 concludes and gives prospects for our future work.

2. INDEXEDHBASE AND TRUTHY
2.1 Architecture of IndexedHBase

Figure 2. IndexedHBase Architecture.
Figure 2 shows the architecture of IndexedHBase. IndexedHBase
employs the HBase [4] system as the storage substrate for both
original social media data and generated index data. Leveraging a
distributed architecture, HBase can provide reliable storage for TB-
or even PB-level datasets. In addition it supports efficient random
access as well as parallel scanning of Table data, which is a
desirable feature for many social data analysis applications.

To quickly locate target data subsets, IndexedHBase has a flexible
indexing module that can build customized index structures for data
stored in its tables. Users can define these through an XML
configuration file, as displayed in Figure 3. The file contains
multiple “index-config” elements, each giving the mapping
information from one source (data) table to one index table. Each
index table implements one user-defined index structure, using its

row keys to store the keys of the index, and its row content to store
the corresponding entries. Within an “index-config” element, users
can define which column of the source table will be indexed (in an
HBase table, the combination of one column family and one
qualifier specifies one column). The default content of each row
contains only the row keys of the source table, but more
information from the source table can be included to handle multi-
dimensional queries. To construct more complicated index
structures, a user-defined indexer class can also be specified.

Given any configuration file, the indexing module provides two
mechanisms for building indices: online-indexing that indexes
records of the data tables on the fly as they are dynamically
inserted, and batch-indexing that builds index tables for pre-loaded
data tables with Hadoop MapReduce jobs.

Figure 3. An example indexing configuration file.
Once the tables are built, they can be used to facilitate queries about
data subsets through index operators. IndexedHBase automatically
generates one default operator for each index table, which can find
target subsets by directly matching information stored in the index
table with a given set of parameters. Users can also implement their
own operators to handle specially customized index structures. To
complete analyses of queried social data subsets, user applications
invoke the query-and-analyze interface of the query-analysis
engine with three parameters: a query, a pair of user-defined map
and reduce functions, and the type of parallel analysis platform to
use. The query-analysis engine will first evaluate the queries by
using combinations of the index operators, and then invoke the run-
job interface of the corresponding framework to analyze the query
results with the given map and reduce functions. The results will be
split across multiple map tasks, which carry out the analysis
computation on all splits in parallel. Currently two parallel analysis
frameworks are supported: Hadoop [3] for simple one-pass
MapReduce jobs, and Twister [14] for iterative MapReduce jobs.

2.2 IndexedHBase for Truthy
IndexedHBase is used to support Truthy [18], a public social media
observatory that analyzes and visualizes information diffusion on
Twitter. Truthy collects data through the Twitter streaming API
[30], which provides a stream that includes a sample of public
tweets from Twitter. Currently, the total size of historical data
collected since August 2010 is approximately 10 Terabytes in
compressed format, and the data rate coming out of the dynamic
stream is in the range of 45-50 million tweets per day, leading to a
growth of approximately 20GB in the total data size. Each tweet
comes in the form of a structured JSON string containing
information about both the tweet and the user who posted it.
Furthermore, if the tweet is a retweet, the original content is also
included in a “retweeted_status” field. Figure 12 in the appendix
illustrates the structure of an example tweet.

To support efficient loading and access of this dataset, we design
the two data tables as shown in Figure 4. The tweet table uses tweet
IDs as row keys, and each row contains multiple columns under a
single column family called “details”. Truthy uses the concept of
“meme” to represent a set of related posts corresponding to a
specific discussion topic, communication channel, or information
source shared by users. Memes can be identified through elements
contained in the texts of tweets, such as keywords, hashtags (e.g.,
#euro2012), user-mentions (e.g., @youtube), and URLs.
Correspondingly, the tweet table contains a “text” column for the
text content, and a “memes” column to store the elements. The user
table uses a concatenation of user ID and tweet ID as the row key
to track all the changes of each user’s metadata associated with each
tweet he/she has posted.

Figure 4. HBase tables for Truthy.
The dataset of Truthy has been used in research projects covering a
broad spectrum of social activities, including political polarization
[9], congressional elections [8, 11], protest events [6, 7], and the
spread of misinformation [23, 24]. Based on these projects, Truthy
proposes a set of queries that are generally useful for most of them.
These queries can be divided into two categories: basic queries and
advanced queries.
Basic queries involve search of tweet subsets according to certain
criteria. For example, given two parameters memes and time-
window, where memes is a list of hashtags, user-mentions, or URLs,
and time-window is a pair of time points, the query get-tweets-with-
meme (memes, time-window) tries to find the IDs of all tweets
containing any elements in memes and created during the given
time-window. Other basic queries include get-tweets-with-text

(keywords, time-window), get-tweets-with-user (user-id, time-
window), and get-retweets (tweet-id, time-window). To achieve
efficient evaluation of these queries, we design the index tables in
Figure 4. Each table uses values from the indexed columns of the
tweet table as row keys, related tweet IDs as column names
(qualifiers), and creation time of the corresponding tweets as
timestamps. All basic queries can be evaluated by using the default
operators of these index tables. So to evaluate get-tweets-with-
meme (memes, time-window), we can simply use the operator for
the meme index table to select the tweet IDs associated with
qualified creation time.
Advanced queries apply further processing of basic queries and
return the final results. These include timestamp-count, user-post-
count, meme-post-count, meme-cooccurrence-count, get-retweet-
edges, and get-mention-edges. All queries take two parameters,
memes and time-window, and require processing of the tweets
returned by get-tweets-with-meme. Each query can actually be
implemented as one query-and-analyze process on IndexedHBase.
For instance, get-retweet-edges uses a Hadoop MapReduce job to
process the tweet IDs found by get-tweets-with-meme. A map task
takes a subset of tweet IDs and checks the content of each
corresponding tweet. If it is a retweet, the map task will output a
<key, value> pair, where key is a retweet edge containing a source

user ID and a retweeted user ID, and value is 1. The reducer tasks
simply collect the output of all mappers and generate retweet edges
associated with their weights. Note that efficient random access to
the tweet table is critical for this process, because the related tweet
IDs are not necessarily consecutively stored in the table. Details
about implementations of the other queries are explained in [17].
Most social media data analysis processes on Truthy start with
execution of one or multiple such queries, and involve extended
analysis and visualization of the query results.

3. REPRODUCING END-TO-END
ANALYSIS ON INDEXEDHBASE
This section details an application of IndexedHBase by reproducing
the end-to-end analysis process presented in a published research
project [9] using the dataset of Truthy. The project investigated how
social media shape the networked public sphere and facilitate
communication between communities with different political
orientations. More than 250,000 politically relevant tweets were
extracted from the Truthy dataset during the six weeks leading up
to the 2010 U.S. congressional midterm elections. Then the
characteristics of the retweet network and mention network
generated from these tweets were examined. The results showed
that the retweet network exhibited a highly modular structure,
segregating users into two homogenous communities
corresponding to the political left and right. In contrast, the mention
network did not exhibit such political segregation.
We will first try to reproduce the analysis and results in [9] on
IndexedHBase using the same dataset from 2010, and then extend
the same analysis process to another dataset collected by Truthy
during the six weeks before the 2012 U.S. presidential election to
verify if a similar pattern in the social communication networks can
be observed. Our explanation in this paper focuses on analysis of
the retweet network, and implementations for the mention network
are similar.
3.1 Analysis Workflow
Figure 5 illustrates the major steps of the analysis process in [9].

Figure 5. End-to-end analysis workflow in [9].
As an important feature of Twitter, hashtags are widely used to
annotate social updates as indications of relevant topics and
intended audience. Therefore, the first two steps in the workflow
try to find a set of political hashtags that can be used to identify
politically related tweets from all those collected during the
selected six-week time window. In Step (1), two of the most
popular political hashtags, #p2 (“Progressives 2.0”) and #tcot
(“Top Conservatives on Twitter”) are manually selected as seed
hashtags. Step (2) tries to extend this initial set with other related
hashtags by calculating the Jaccard coefficient between a seed
hashtag and others that have co-occurred with it in at least one
tweet. For a set of tweets S containing a seed hashtag, and another

set T containing a different hashtag, the Jaccard coefficient between
S and T is defined as:

𝜎𝜎(𝑆𝑆,𝑇𝑇) = |S∩T|
|S∪T|

. (1)

When this coefficient is large enough, the two hashtags are
recognized as related. A threshold of 0.005 was used in [9] to
identify the related hashtags for both seeds.

Step (3) executes the get-retweet-edges query, using all hashtags
found in Step (2) as the memes parameter and the six-week time
window as the time-window parameter. It does this to get the
retweet network among users from both political orientations. The
retweet edges compose a graph structure, with vertices representing
users and edges representing ‘retweet’ relationships that happened
during the time window.

Step (4) uses a combination of two algorithms, leading eigenvector
modularity maximization [21] and label propagation [22], to detect
communities on the retweet network. Here a “community” is
defined as a set of vertices on a graph that are densely inter-
connected and sparsely connected to the other parts of the graph.
After this step, vertices from different communities are labeled with
different colors for visualization in Step (6).

In order to achieve a high-quality visualization of segregated
communities in the retweet network, Step (5) uses the
“Fruchterman-Reingold” force-directed layout algorithm [16] to
generate a desirable layout of the retweet network. This algorithm
goes through multiple iterations computing vertices’ positions to
achieve a layout where inter-connected nodes are ‘pulled’ towards
each other and disconnected nodes are ‘pushed’ apart.

Step (6) makes a final plot of the retweet network from Step (3)
using the color labels computed in Step (4) and layout information
generated in Step (5).

3.2 Reproducing Results for 2010
The following represents our implementation for reproducing the
analysis workflow in Figure 5, and validates our solution by
comparing against the ones originally reported in [9]. Our
experiments are carried out on 35 nodes of the Alamo HPC cluster
on FutureGrid [32]. The hardware configuration is given in Table
1. Each node is installed with CentOS 5.9 and Java 1.7.0_40. We
use Hadoop 1.0.4, HBase 0.94.2, Twister 0.9 (together with
ActiveMQ 5.4.2), and R 2.10.1 in our experiments. Among the 35
nodes, one is used to host the Hadoop jobtracker and HDFS
namenode, another hosts the HBase master, and a third hosts
Zookeeper and Active MQ broker. The other 32 nodes host HDFS
datanodes, Hadoop tasktrackers, HBase region servers, and Twister
daemons.

Table 1. Per-node configuration on the Alamo Cluster

CPU RAM Hard Disk Network
8 * 2.66GHz (Intel

Xeon X5550) 12GB 500GB 40Gb
InfiniBand

As explained in Section 3.1, Step (1) is fixed to manual choice of
#p2 and #tcot. We implement Step (2) as two query-and-analyze
processes on IndexedHBase, one for finding related hashtags for
#p2, and one for #tcot. Both processes set the query to get-tweets-
with-meme, and apply analysis over the query results with the map
and reduce functions as given in Figure 6.

After getting the tweet IDs for the seed hashtag, the query-analysis
engine will automatically split them in to multiple partitions, each

containing a fixed number (which is set to 30,000 by default) of
tweet IDs. A Hadoop MapReduce job is then scheduled to process
all the partitions in parallel with the functions given in Figure 6.
Each mapper processes one partition, and for every tweet ID in that
partition, the mapper will access the corresponding row in the tweet
table and get the value of the “memes” column, which contains all
hashtags, user-mentions, and URLs from the corresponding tweet.
Then the mapper will output all the hashtags that are different from
the seed hashtag as intermediate results. After the shuffling phase,
each reducer will receive a list of unique hashtags that have co-
occurred with the seed hashtag. For each hashtag in the list, the
reducer uses the get-tweets-with-meme operator to access the
meme index table and find the related tweet IDs. Then the Jaccard
coefficient between this hashtag and the seed hashtag is calculated
according to formula (1); if the value reaches the given threshold
(0.005), this hashtag will be output as a final result. Overall, it takes
109.3 seconds to find related hashtags for #p2, which involves
analysis of the content of 109,312 tweets with 4 map tasks. The
same process for #tcot spends 128.1 seconds in analyzing 189,840
tweets with 8 map tasks. Merging the results for both seed hashtags,
we found the same 66 related hashtags as [9].

Figure 6. MapReduce algorithm for mining related hashtags.

Our implementation for Step (2) demonstrates that index data is not
only useful for query evaluation, but also valuable for analysis
purposes such as mining of related hashtags. The algorithm in
Figure 6 is generally useful for all social data analysis projects that
need to find a set of related hashtags based on seed hashtags.

Step (3) is directly completed with the get-retweet-edges query.
This step takes 93.3 seconds, and returns the same retweet network
as in [9], which contains 23,766 non-isolated nodes.

Step (4), (5), and (6) can be completed by using the igraph [28]
library of R, which provides a baseline benchmark with sequential
implementation. Table 2 lists the execution time of these three steps
with R on a single node. It can be observed that Step (5) is
significantly more time consuming than the other two steps, and
may potentially become a bottleneck of the analysis workflow as
we apply it to larger-scale datasets. Therefore, we provide a parallel
implementation of the “Fruchterman-Reingold” layout algorithm
[16] to speed up the whole workflow. Since the algorithm involves
iterative computation, our implementation is based on Twister,
which provides better performance than Hadoop for iterative

algorithms [14]. The parallel “Fruchterman-Reingold” algorithm
(MRFR) is given in Figure 7.

Table 2. Execution time (seconds) for Step (4) - (6)
(4) Community
Detection

(5) Graph Layout
(500 iterations) (6) Visualization

3.4 4508.3 1.6

The idea of the “Fruchterman-Reingold” algorithm is to compute
the layout of a graph by simulating the behavior of a physical
system where vertices of the graph are taken as atomic particles,
and edges are taken as springs. A repulsive force exists between
each pair of atomic particles, which tends to push them away from
each other. An attractive force exists on each spring, which tends
to pull the vertices at the two ends closer to each other. Both forces
are defined as functions of distances between vertices. Therefore,
starting from an initial state of random layout, in each iteration,
disconnected vertices are pushed further apart, and vertices
connected with edges are pulled closer together. Over multiple
iterations, the whole system eventually evolves to a ‘low-energy’
state. Besides the forces, a “temperature” parameter is used to limit
the maximum displacement of vertices in each iteration. The
temperature eventually ‘cools’ down as iterations go.

The whole Step (5) is also implemented as a query-and-analyze
process. To facilitate this step, we modified get-retweet-edges to
get get-retweet-adjmtx, a new query that generates the adjacency
matrix of the retweet network instead of only the edges. This query
outputs a list of lines, and each line is in the form of ‘<vertex ID>
<neighbor vertex ID> <neighbor vertex ID> …’ i.e., a vertex ID
followed by a list of IDs of other vertices that are connected with
this vertex by edges. After executing get-retweet-adjmtx, the
query-analysis engine partitions the adjacency matrix into multiple
sub-graphs, each containing a subset of vertices associated with
their neighbors. Then an iterative MapReduce job is scheduled on
Twister to process these sub-graphs in parallel, using the functions
given in Figure 7. The whole job works as follows: during job
initialization time, an initial random layout of the whole graph is
broadcasted to all the mappers. Each mapper reads in a sub-graph
during task initialization time, then saves it in memory for usage
across all iterations. Within every iteration, each mapper receives
the global layout of the whole graph from the last iteration through
its input <key, value> pair. Then for each vertex in the sub-graph,
the mapper first calculates its displacement based on the repulsive
forces it receives from every other vertex, and again based on the
attractive forces it receives from its neighbors, and finally decides
its total displacement by taking the temperature into consideration.
Then a new layout of the sub-graph is generated based on the
displacements, and output as an intermediate result from the
mapper. The reducer collects the output from all mappers to
generate the global layout. If the maximum number of iterations is
reached, the reducer will output the global layout as the final result.
Otherwise, the global layout is broadcasted to all mappers for the
next iteration.

Figure 8 illustrates the per-iteration execution time and speed-ups
of MRFR under different levels of parallelism. It is obvious that
MRFR can effectively speed up the graph layout step. Specifically,
with 64 mappers on 8 nodes, MRFR runs 15 times faster than the
sequential implementation in R, completing 500 iterations within
300 seconds. However, MRFR does not achieve very good
scalability for the 2010 retweet network, mainly because the
amount of computation required in mappers is not large enough
compared to the scheduling and communication overhead. For
example, in case of 64 mappers, the slowest mapper finishes in

250ms, while the total overhead stays consistently at about 350ms
across different numbers of mappers. Figure 9 shows the final
visualization of the retweet network using the layout generated by
MRFR. The layout is almost the same as the plot in [9], with only
a slight difference caused by a different initial random layout. As
identified in [9], the red cluster is made of 93% right leaning
(conservative) users, and the blue cluster is made of 80% left
leaning (progressive) users. Since we generate the same result as
[9] in each step of the analysis workflow, our solution on
IndexedHBase is validated.

Figure 7. Parallel Fruchterman-Reingold algorithm using
iterative MapReduce.

Figure 8. Per-iteration execution
time for MRFR.

Figure 9. Final plot of the
retweet network.

3.3 Extending Analysis to Data in 2012
Here we extend the analysis workflow in Figure 5 to a later dataset
collected during the six weeks (09/24/2012 to 11/06/2012) before
the 2012 U.S. presidential election, and verify if the corresponding

retweet network demonstrates a similar polarized pattern. The
average data size for each day in 2012 is about 6 times larger than
2010.
Step (1) still starts from #p2 and #tcot. Step (2) spends 142 seconds
in mining related hashtags for #p2, and 191 seconds for #tcot. The
number of tweets analyzed is 160,934 and 364,825 respectively. In
total, 66 related hashtags are found (see Table 3 in the appendix).
In Step (3), 80 mappers need 150 seconds to analyze 2,360,361
politically related tweets, and the result is a retweet network that is
20 times larger, with 477,111 vertices and 665,599 edges.

Step (4) requires 2402 seconds on R to complete community
detection for this large network. In Step (5), it takes as long as 6044
seconds to finish only one iteration of the Fruchterman-Reingold
algorithm on R. This demonstrates that due to the fast growth of
data volume, sequential algorithms quickly become infeasible for
social data analysis scenarios. In order to address this challenge, we
use more mappers in MRFR to complete Step (5). Figure 10
illustrates the per-iteration execution time and speed-ups of MRFR
for the 2012 retweet network. The near-linear scalability clearly
demonstrates that MRFR is especially good at handling large
networks. In particular, using 256 mappers on 32 nodes, MRFR can
finish one iteration 355 times faster than the sequential
implementation in R. Step (6) runs for 32 seconds on R, and Figure
11 shows the final plot of the two largest communities of the
retweet network. On the one hand, we can still observe a clearly
segregated political structure in the 2012 network; on the other
hand, the two sides also seem to demonstrate a ‘merging’ trend by
having more edges reaching out to each other.

Figure 10. Per-iteration execution

time of MRFR (2012).
Figure 11. Final plot of the

retweet network (2012).

4. RELATED WORK
For details about the data loading, indexing, and query evaluation
strategies of IndexedHBase, please refer to [17]. For a list of other
social media data analysis projects that can be supported by
IndexedHBase, please refer to [6, 7, 8, 11, 23, 24, 33].

DataStax (Cassandra) [10] and Riak [25] are two other systems that
also use distributed NoSQL databases for data storage and in
addition support queries about data subsets with text and secondary
indices. However, since Cassandra does not support range scans
very well, it is not suitable for several important use cases in social
data analysis, e.g. range queries about memes in the form of
‘#occupy*’. Moreover, the indexing mechanisms in these systems
are designed mainly for search purposes, and thus are neither
customizable nor flexible enough for efficient evaluation of the
temporal queries and analyses in Truthy. As demonstrated in [17],
the lightweight MapReduce framework of Riak cannot handle the
result size of the queries in Truthy.

Hadoop++ [12], HAIL [13], and Eagle-Eyed Elephant [15] are
systems that try to extend the Hadoop [3] system with various
indexing mechanisms to facilitate MapReduce queries. However,

the queries targeted by these systems do not cover sophisticated
analytics that may involve iterative computation. Besides, they all
schedule MapReduce tasks based on data blocks or splits (or at least
‘relevant’ splits) stored on HDFS, and tasks may have to scan
irrelevant data during query evaluation. In contrast, by leveraging
HBase for efficient random access of data records, IndexedHBase
can dynamically adjust the number of MapReduce tasks in a job
according to the exact number of records in the target data subsets,
and the tasks only need to access relevant data records to produce
the final result.

HadoopDB [1] provides a hybrid solution that can utilize the
indexing techniques provided by relational databases to achieve
efficient query evaluation. However, HadoopDB applies deep
changes to the Hadoop framework, and forces the use of relational
databases in a parallel architecture, which is difficult to configure
and maintain. The SQL queries supported by HadoopDB also do
not cover sophisticated iterative analysis algorithms.

By using Spark [35] as the execution engine and applying various
optimizations to its in-memory processing model, Shark [34] is able
to support both efficient SQL queries and sophisticated iterative
analytics at a large scale. Compared with Shark, IndexedHBase
supports efficient fine-grained data operations, putting an emphasis
on building suitable index structures to facilitate location of target
data subsets. IndexedHBase can be integrated with Shark, and help
further improve the performance of analysis jobs by only loading
relevant data records as RDDs in Spark. The columnar storage of
table data used by both Shark and Dremel [19] are inspiring to
IndexedHBase in terms of more efficient query evaluation and
iterative analyses.

To the best of our knowledge, our algorithm in Figure 7 is the first
iterative MapReduce implementation for the Fruchterman-
Reingold layout algorithm. There are previous efforts on
parallelizing this algorithm with MPI [20] and GPUs [26], and we
may consider extending our solution with the usage of GPUs on
each node to handle larger-scale problems.

5. CONCLUSIONS AND FUTURE WORK
In the end we gained three important lessons from our experience
with IndexedHBase. First, flexible indexing mechanisms and
efficient random access to single data records are two critical
factors for fast location of target data subsets. Second, index data is
not only useful for query evaluation, but also valuable for analysis
and mining purposes. Finally, social data analysis workflows
normally consist of multiple tasks that are suitable for different
processing patterns. As such, dynamically adopting different
frameworks to handle different tasks is crucial to achieve efficient
processing of the whole workflow.

There are two major directions that we consider worthy of future
work. First, we will integrate IndexedHBase with other parallel
processing frameworks like Giraph [2] to handle more variations in
the computation pattern of social data analysis tasks. Second, we
will try to extend IndexedHBase with a high level language such as
Pig [5] to facilitate composition of complex workflows.

6. ACKNOWLEDGMENTS
We would like to thank the Truthy group of IU School of
Informatics and Computing for their collaboration and help on our
questions about social media data analysis. Thanks to Prof.
Geoffrey Fox for his advice on development of IndexedHBase.
Thanks also to the FutureGrid team for their help on our testing
environment setup.

7. REFERENCES
[1] Abouzeid, A., et al. 2009. HadoopDB: an architectural

hybrid of MapReduce and DBMS technologies for analytical
workloads. Proc. VLDB Endow. 2, 1 (August 2009), 922-
933.

[2] Apache Giraph. http://giraph.apache.org/.
[3] Apache Hadoop. http://hadoop.apache.org/.
[4] Apache HBase. http://hbase.apache.org/.
[5] Apache Pig. http://pig.apache.org/.
[6] Conover, M., et al. 2013. The Geospatial Characteristics of a

Social Movement Communication Network. PLoS ONE,
8(3): e55957.

[7] Conover, M., et al. 2013. The Digital Evolution of Occupy
Wall Street. PloS ONE, 8(5), e64679.

[8] Conover, M., et al. 2012. Partisan asymmetries in online
political activity. EPJ Data Science, 1, 6 (2012).

[9] Conover, M., et al. 2011. Political Polarization on Twitter. In
Proceedings of the 5th International AAAI Conference on
Weblogs and Social Media, (ICWSM 2011).

[10] DataStax. http://www.datastax.com/.
[11] DiGrazia, J., et al. 2013. More Tweets, More Votes: Social

Media as a Quantitative Indicator of Political Behavior.
Available at SSRN: http://dx.doi.org/10.2139/ssrn.2235423

[12] Dittrich, J., et al. 2010. Hadoop++: making a yellow elephant
run like a cheetah (without it even noticing). Proc. VLDB
Endow. 3, 1-2 (September 2010), 515-529.

[13] Dittrich, J., et al. 2012. Only aggressive elephants are fast
elephants. Proc. VLDB Endow. 5, 11 (July 2012), 1591-1602.

[14] Ekanayake, J., et al. 2010. Twister: a runtime for iterative
MapReduce. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing
(HPDC '10). ACM, New York, NY, USA, 810-818.

[15] Eltabakh, M., et al. 2013. Eagle-eyed elephant: split-oriented
indexing in Hadoop. In Proceedings of the 16th International
Conference on Extending Database Technology (EDBT '13).
ACM, New York, NY, USA, 89-100.

[16] Fruchterman, T., Reingold, E. 1991. Graph drawing by force-
directed placement. Softw. Pract. Exper. 21, 11 (November
1991), 1129-1164.

[17] Gao, X., et al. 2013. Supporting a Social Media Observatory
with Customizable Index Structures - Architecture and
Performance. Book chapter to appear in Cloud Computing
for Data Intensive Applications, to be published by Springer
Publisher, 2014.

[18] McKelvey, K., Menczer, F. 2013. Design and prototyping of
a social media observatory. In Proceedings of the 22nd
international conference on World Wide Web companion
(WWW '13 Companion). International World Wide Web
Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 1351-1358.

[19] Melnik, S., et al. 2010. Dremel: interactive analysis of web-
scale datasets. Proc. VLDB Endow. 3, 1-2 (September 2010),
330-339.

[20] Mueller, C., Gregor, D., Lumsdaine, A. 2006. Distributed
force-directed graph layout and visualization. In Proceedings
of the 6th Eurographics conference on Parallel Graphics and
Visualization (EG PGV'06). Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 83-90.

[21] Newman, M. 2006. Finding community structure in networks
using the eigenvectors of matrices. Physical Review E 74,
036104 (2006).

[22] Raghavan, U., Albert, R., Kumara, S. 2007. Near linear time
algorithm to detect community structures in largescale
networks. Physical Review E 76, 036106 (2007).

[23] Ratkiewicz, J., et al. 2011. Truthy: mapping the spread of
astroturf in microblog streams. In Proceedings of the 20th
international conference companion on World wide web
(WWW '11). ACM, New York, NY, USA, 249-252.

[24] Ratkiewicz, J., et al. 2011. Detecting and Tracking Political
Abuse in Social Media. In Proceedings of 5th International
AAAI Conference on Weblogs and Social Media (ICWSM
2011).

[25] Riak. http://basho.com/riak/.
[26] Sharma, P., et al. 2011. Speeding up network layout and

centrality measures for social computing goals. In
Proceedings of the 4th international conference on social
computing, behavioral-cultural modeling and prediction
(SBP'11). Springer-Verlag, Berlin, Heidelberg, 244-251.

[27] Shvachko, K., et al. 2010. The Hadoop Distributed File
System. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST) (MSST
'10). IEEE Computer Society, Washington, DC, USA, 1-10.

[28] The igraph library. http://igraph.sourceforge.net/.
[29] The R Project. http://www.r-project.org/.
[30] Twitter Streaming API.

https://dev.twitter.com/docs/streaming-apis.
[31] Twitter. https://twitter.com/.
[32] Von Laszewski, G., et al. 2010. Design of the FutureGrid

Experiment Management Framework. In Proceedings of
Gateway Computing Environments Workshop, (GCE 2010).

[33] Weng, L., et al. 2013. The role of information diffusion in
the evolution of social networks. In Proceedings of 19th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, (KDD 2013).

[34] Xin, R., et al. 2013. Shark: SQL and rich analytics at scale.
In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD '13). ACM,
New York, NY, USA, 13-24.

[35] Zaharia, M., et al. 2012. Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (NSDI'12). USENIX
Association, Berkeley, CA, USA, 2-2.

	1. INTRODUCTION
	2. INDEXEDHBASE AND TRUTHY
	2.1 Architecture of IndexedHBase
	2.2 IndexedHBase for Truthy

	3. REPRODUCING END-TO-END ANALYSIS ON INDEXEDHBASE
	3.1 Analysis Workflow
	3.2 Reproducing Results for 2010
	3.3 Extending Analysis to Data in 2012

	4. RELATED WORK
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

