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ABSTRACT
As data intensive applications evolve, many research projects 
involving Big Data require efficient extraction and analysis of 
specific data subsets, rather than the whole dataset. Social media 
data analysis is one such example. While social media platforms 
such as Twitter provide tremendous data about all kinds of social 
activities, most research analyses focus on specific social events, 
such as presidential elections or protests. In order to support the 
requirements of such research use cases, the storage platform needs 
to provide not only a scalable solution for the overall large dataset, 
but also mechanisms for efficiently querying the target subsets and 
applying post-query analyses. This paper introduces 
IndexedHBase, a storage platform specially designed to support 
end-to-end analysis of social media data. IndexedHBase uses 
HBase as the storage substrate, and provides a customizable 
indexing framework to facilitate queries about data subsets related 
to different social events. Beyond the queries, IndexedHBase can 
be integrated with parallel processing runtimes such as Hadoop and 
Twister to support sophisticated analysis of the query results 
through user-defined MapReduce functions. We describe the 
architecture and components of IndexedHBase, and demonstrate its 
effectiveness and efficiency by reproducing the end-to-end analysis 
of a published research project about the 2010 US midterm 
elections. We then extend this to a data subset about the 2012 
presidential election, which serves to demonstrate that 
IndexedHBase correctly generates results that match with 
independent evaluations. Furthermore, our parallel implementation 
for the most time-consuming analysis step can achieve a processing 
speed that is tens to hundreds of times faster compared with a 
baseline sequential implementation in R for a distributed setup. 

Categories and Subject Descriptors
H.2 [Database Management]: Systems.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation. 

Keywords
Social Media Data Analysis, IndexedHBase, Customizable 
Indexing Framework, Parallel Analysis. 

1. INTRODUCTION
Motivated by the widespread adoption of social media platforms 
such as Twitter [31], investigating social activities through analysis 
of large scale social media datasets has been a popular research 
topic in recent years. Compared with previous data intensive 
computing problems, social media data analysis demonstrates a 
special characteristic: while the size of the whole social media 
dataset is huge, most analyses only focus on data subsets related to 
specific social events, or special aspects of social activities, such as 
congressional elections [8, 11], protest events [6, 7], and social link 
creation [33]. For such research scenarios, limiting analysis 
computation to the exact scope of the target subsets is important 
both in terms of efficiency and better resource utilization, 
especially in multi-task computing environments. Therefore, 
mechanisms for quickly locating the relevant data subsets are 
needed on the data storage and analysis platforms. 

Another important feature about social data analysis is that the 
analysis workflow normally consists of multiple stages, and each 
stage may apply a diversity of algorithms to process the target data 
subsets, as illustrated in Figure 1. Implementations of certain 
algorithms may demonstrate different processing patterns. 
Therefore, to achieve efficient execution of the whole workflow, 
the analysis platform must adapt to different processing 
frameworks to complete various steps from these stages. 

Figure 1. Stages in a social media data analysis process. 
As a partial solution to these challenges, existing systems such as 
Eagle-Eyed-Elephant (E3) [15] and Hadoop++ [12] support 
efficient selection, aggregation, and join queries by building 
various indices over datasets stored in Hadoop Distributed File 
System (HDFS) [27]. However, queries supported by these systems 
cannot cover an end-to-end solution for the abovementioned 
scenarios, which may involve sophisticated mining and 
visualization processes over the query results. Moreover, the 
storage solution of HDFS does not support efficient random access 
of social updates (e.g. Twitter tweets), which is a basic requirement 
in many social data analysis projects. 

In pursuit of a more complete solution, we introduce IndexedHBase 
[17], a storage platform that is specially designed for carrying out 
end-to-end social media data analysis. IndexedHBase has been 
used to serve the Truthy [18] social data observatory, and our 
previous work in [17] has demonstrated its scalability and 



efficiency in handling Truthy queries. This paper extends our 
existing work and makes the following contributions: 

(1) An extended architecture of IndexedHBase, which not only
encapsulates efficient indexing and querying mechanisms, but 
can also be integrated with various parallel processing
frameworks such as Hadoop [3] and Twister [14] to support
sophisticated analysis of the query results through user-
defined MapReduce functions.

(2) We provide implementations of two parallel algorithms that
are generally useful for many social media data analysis
processes. The first one is for mining related information
about specific social activities, and involves processing of
both original and index data. The second deals with
visualization of query results that can be represented by a
graph structure.

(3) A demonstration is given of the effectiveness and efficiency
of IndexedHBase by reproducing the end-to-end analysis
process from a published research project about political
polarization [9], and further extending it to another data subset 
about the 2012 US presidential election. We validate our
solution by comparing it with the published results, and
investigate the scalability of our parallel program compared
with a baseline implementation in R [29].

The rest of this paper is organized as follows. Section 2 describes 
the architecture and components of IndexedHBase, as well as its 
application in Truthy. Section 3 presents our implementations on 
IndexedHBase for reproducing an end-to-end analysis process 
about political polarization. Section 4 discusses related work. 
Section 5 concludes and gives prospects for our future work. 

2. INDEXEDHBASE AND TRUTHY
2.1 Architecture of IndexedHBase

Figure 2. IndexedHBase Architecture. 
Figure 2 shows the architecture of IndexedHBase. IndexedHBase 
employs the HBase [4] system as the storage substrate for both 
original social media data and generated index data. Leveraging a 
distributed architecture, HBase can provide reliable storage for TB- 
or even PB-level datasets. In addition it supports efficient random 
access as well as parallel scanning of Table data, which is a 
desirable feature for many social data analysis applications. 

To quickly locate target data subsets, IndexedHBase has a flexible 
indexing module that can build customized index structures for data 
stored in its tables. Users can define these through an XML 
configuration file, as displayed in Figure 3. The file contains 
multiple “index-config” elements, each giving the mapping 
information from one source (data) table to one index table. Each 
index table implements one user-defined index structure, using its 

row keys to store the keys of the index, and its row content to store 
the corresponding entries. Within an “index-config” element, users 
can define which column of the source table will be indexed (in an 
HBase table, the combination of one column family and one 
qualifier specifies one column). The default content of each row 
contains only the row keys of the source table, but more 
information from the source table can be included to handle multi-
dimensional queries. To construct more complicated index 
structures, a user-defined indexer class can also be specified. 

Given any configuration file, the indexing module provides two 
mechanisms for building indices: online-indexing that indexes 
records of the data tables on the fly as they are dynamically 
inserted, and batch-indexing that builds index tables for pre-loaded 
data tables with Hadoop MapReduce jobs. 

Figure 3. An example indexing configuration file. 
Once the tables are built, they can be used to facilitate queries about 
data subsets through index operators. IndexedHBase automatically 
generates one default operator for each index table, which can find 
target subsets by directly matching information stored in the index 
table with a given set of parameters. Users can also implement their 
own operators to handle specially customized index structures. To 
complete analyses of queried social data subsets, user applications 
invoke the query-and-analyze interface of the query-analysis 
engine with three parameters: a query, a pair of user-defined map 
and reduce functions, and the type of parallel analysis platform to 
use. The query-analysis engine will first evaluate the queries by 
using combinations of the index operators, and then invoke the run-
job interface of the corresponding framework to analyze the query 
results with the given map and reduce functions. The results will be 
split across multiple map tasks, which carry out the analysis 
computation on all splits in parallel. Currently two parallel analysis 
frameworks are supported: Hadoop [3] for simple one-pass 
MapReduce jobs, and Twister [14] for iterative MapReduce jobs.  

2.2 IndexedHBase for Truthy 
IndexedHBase is used to support Truthy [18], a public social media 
observatory that analyzes and visualizes information diffusion on 
Twitter. Truthy collects data through the Twitter streaming API 
[30], which provides a stream that includes a sample of public 
tweets from Twitter. Currently, the total size of historical data 
collected since August 2010 is approximately 10 Terabytes in 
compressed format, and the data rate coming out of the dynamic 
stream is in the range of 45-50 million tweets per day, leading to a 
growth of approximately 20GB in the total data size. Each tweet 
comes in the form of a structured JSON string containing 
information about both the tweet and the user who posted it. 
Furthermore, if the tweet is a retweet, the original content is also 
included in a “retweeted_status” field. Figure 12 in the appendix 
illustrates the structure of an example tweet. 



To support efficient loading and access of this dataset, we design 
the two data tables as shown in Figure 4. The tweet table uses tweet 
IDs as row keys, and each row contains multiple columns under a 
single column family called “details”. Truthy uses the concept of 
“meme” to represent a set of related posts corresponding to a 
specific discussion topic, communication channel, or information 
source shared by users. Memes can be identified through elements 
contained in the texts of tweets, such as keywords, hashtags (e.g., 
#euro2012), user-mentions (e.g., @youtube), and URLs. 
Correspondingly, the tweet table contains a “text” column for the 
text content, and a “memes” column to store the elements. The user 
table uses a concatenation of user ID and tweet ID as the row key 
to track all the changes of each user’s metadata associated with each 
tweet he/she has posted. 

Figure 4. HBase tables for Truthy. 
The dataset of Truthy has been used in research projects covering a 
broad spectrum of social activities, including political polarization 
[9], congressional elections [8, 11], protest events [6, 7], and the 
spread of misinformation [23, 24]. Based on these projects, Truthy 
proposes a set of queries that are generally useful for most of them. 
These queries can be divided into two categories: basic queries and 
advanced queries. 
Basic queries involve search of tweet subsets according to certain 
criteria. For example, given two parameters memes and time-
window, where memes is a list of hashtags, user-mentions, or URLs, 
and time-window is a pair of time points, the query get-tweets-with-
meme (memes, time-window) tries to find the IDs of all tweets 
containing any elements in memes and created during the given 
time-window. Other basic queries include get-tweets-with-text 

(keywords, time-window), get-tweets-with-user (user-id, time-
window), and get-retweets (tweet-id, time-window). To achieve 
efficient evaluation of these queries, we design the index tables in 
Figure 4. Each table uses values from the indexed columns of the 
tweet table as row keys, related tweet IDs as column names 
(qualifiers), and creation time of the corresponding tweets as 
timestamps. All basic queries can be evaluated by using the default 
operators of these index tables. So to evaluate get-tweets-with-
meme (memes, time-window), we can simply use the operator for 
the meme index table to select the tweet IDs associated with 
qualified creation time. 
Advanced queries apply further processing of basic queries and 
return the final results. These include timestamp-count, user-post-
count, meme-post-count, meme-cooccurrence-count, get-retweet-
edges, and get-mention-edges. All queries take two parameters, 
memes and time-window, and require processing of the tweets 
returned by get-tweets-with-meme. Each query can actually be 
implemented as one query-and-analyze process on IndexedHBase. 
For instance, get-retweet-edges uses a Hadoop MapReduce job to 
process the tweet IDs found by get-tweets-with-meme. A map task 
takes a subset of tweet IDs and checks the content of each 
corresponding tweet. If it is a retweet, the map task will output a 
<key, value> pair, where key is a retweet edge containing a source 

user ID and a retweeted user ID, and value is 1. The reducer tasks 
simply collect the output of all mappers and generate retweet edges 
associated with their weights. Note that efficient random access to 
the tweet table is critical for this process, because the related tweet 
IDs are not necessarily consecutively stored in the table. Details 
about implementations of the other queries are explained in [17]. 
Most social media data analysis processes on Truthy start with 
execution of one or multiple such queries, and involve extended 
analysis and visualization of the query results. 

3. REPRODUCING END-TO-END
ANALYSIS ON INDEXEDHBASE
This section details an application of IndexedHBase by reproducing 
the end-to-end analysis process presented in a published research 
project [9] using the dataset of Truthy. The project investigated how 
social media shape the networked public sphere and facilitate 
communication between communities with different political 
orientations. More than 250,000 politically relevant tweets were 
extracted from the Truthy dataset during the six weeks leading up 
to the 2010 U.S. congressional midterm elections. Then the 
characteristics of the retweet network and mention network 
generated from these tweets were examined. The results showed 
that the retweet network exhibited a highly modular structure, 
segregating users into two homogenous communities 
corresponding to the political left and right. In contrast, the mention 
network did not exhibit such political segregation. 
We will first try to reproduce the analysis and results in [9] on 
IndexedHBase using the same dataset from 2010, and then extend 
the same analysis process to another dataset collected by Truthy 
during the six weeks before the 2012 U.S. presidential election to 
verify if a similar pattern in the social communication networks can 
be observed. Our explanation in this paper focuses on analysis of 
the retweet network, and implementations for the mention network 
are similar. 
3.1 Analysis Workflow 
Figure 5 illustrates the major steps of the analysis process in [9]. 

Figure 5. End-to-end analysis workflow in [9]. 
As an important feature of Twitter, hashtags are widely used to 
annotate social updates as indications of relevant topics and 
intended audience. Therefore, the first two steps in the workflow 
try to find a set of political hashtags that can be used to identify 
politically related tweets from all those collected during the 
selected six-week time window. In Step (1), two of the most 
popular political hashtags, #p2 (“Progressives 2.0”) and #tcot 
(“Top Conservatives on Twitter”) are manually selected as seed 
hashtags. Step (2) tries to extend this initial set with other related 
hashtags by calculating the Jaccard coefficient between a seed 
hashtag and others that have co-occurred with it in at least one 
tweet. For a set of tweets S containing a seed hashtag, and another 



set T containing a different hashtag, the Jaccard coefficient between 
S and T is defined as: 

𝜎𝜎(𝑆𝑆,𝑇𝑇) = |S∩T|
|S∪T|

.   (1) 

When this coefficient is large enough, the two hashtags are 
recognized as related. A threshold of 0.005 was used in [9] to 
identify the related hashtags for both seeds. 

Step (3) executes the get-retweet-edges query, using all hashtags 
found in Step (2) as the memes parameter and the six-week time 
window as the time-window parameter. It does this to get the 
retweet network among users from both political orientations. The 
retweet edges compose a graph structure, with vertices representing 
users and edges representing ‘retweet’ relationships that happened 
during the time window. 

Step (4) uses a combination of two algorithms, leading eigenvector 
modularity maximization [21] and label propagation [22], to detect 
communities on the retweet network. Here a “community” is 
defined as a set of vertices on a graph that are densely inter-
connected and sparsely connected to the other parts of the graph. 
After this step, vertices from different communities are labeled with 
different colors for visualization in Step (6). 

In order to achieve a high-quality visualization of segregated 
communities in the retweet network, Step (5) uses the 
“Fruchterman-Reingold” force-directed layout algorithm [16] to 
generate a desirable layout of the retweet network. This algorithm 
goes through multiple iterations computing vertices’ positions to 
achieve a layout where inter-connected nodes are ‘pulled’ towards 
each other and disconnected nodes are ‘pushed’ apart. 

Step (6) makes a final plot of the retweet network from Step (3) 
using the color labels computed in Step (4) and layout information 
generated in Step (5). 

3.2 Reproducing Results for 2010 
The following represents our implementation for reproducing the 
analysis workflow in Figure 5, and validates our solution by 
comparing against the ones originally reported in [9]. Our 
experiments are carried out on 35 nodes of the Alamo HPC cluster 
on FutureGrid [32]. The hardware configuration is given in Table 
1. Each node is installed with CentOS 5.9 and Java 1.7.0_40. We
use Hadoop 1.0.4, HBase 0.94.2, Twister 0.9 (together with
ActiveMQ 5.4.2), and R 2.10.1 in our experiments. Among the 35
nodes, one is used to host the Hadoop jobtracker and HDFS
namenode, another hosts the HBase master, and a third hosts
Zookeeper and Active MQ broker. The other 32 nodes host HDFS
datanodes, Hadoop tasktrackers, HBase region servers, and Twister
daemons.

Table 1. Per-node configuration on the Alamo Cluster 

CPU RAM Hard Disk Network 
8 * 2.66GHz (Intel 

Xeon X5550) 12GB 500GB 40Gb 
InfiniBand 

As explained in Section 3.1, Step (1) is fixed to manual choice of 
#p2 and #tcot. We implement Step (2) as two query-and-analyze 
processes on IndexedHBase, one for finding related hashtags for 
#p2, and one for #tcot. Both processes set the query to get-tweets-
with-meme, and apply analysis over the query results with the map 
and reduce functions as given in Figure 6. 

After getting the tweet IDs for the seed hashtag, the query-analysis 
engine will automatically split them in to multiple partitions, each 

containing a fixed number (which is set to 30,000 by default) of 
tweet IDs. A Hadoop MapReduce job is then scheduled to process 
all the partitions in parallel with the functions given in Figure 6. 
Each mapper processes one partition, and for every tweet ID in that 
partition, the mapper will access the corresponding row in the tweet 
table and get the value of the “memes” column, which contains all 
hashtags, user-mentions, and URLs from the corresponding tweet. 
Then the mapper will output all the hashtags that are different from 
the seed hashtag as intermediate results. After the shuffling phase, 
each reducer will receive a list of unique hashtags that have co-
occurred with the seed hashtag. For each hashtag in the list, the 
reducer uses the get-tweets-with-meme operator to access the 
meme index table and find the related tweet IDs. Then the Jaccard 
coefficient between this hashtag and the seed hashtag is calculated 
according to formula (1); if the value reaches the given threshold 
(0.005), this hashtag will be output as a final result. Overall, it takes 
109.3 seconds to find related hashtags for #p2, which involves 
analysis of the content of 109,312 tweets with 4 map tasks. The 
same process for #tcot spends 128.1 seconds in analyzing 189,840 
tweets with 8 map tasks. Merging the results for both seed hashtags, 
we found the same 66 related hashtags as [9]. 

Figure 6. MapReduce algorithm for mining related hashtags. 

Our implementation for Step (2) demonstrates that index data is not 
only useful for query evaluation, but also valuable for analysis 
purposes such as mining of related hashtags. The algorithm in 
Figure 6 is generally useful for all social data analysis projects that 
need to find a set of related hashtags based on seed hashtags. 

Step (3) is directly completed with the get-retweet-edges query. 
This step takes 93.3 seconds, and returns the same retweet network 
as in [9], which contains 23,766 non-isolated nodes. 

Step (4), (5), and (6) can be completed by using the igraph [28] 
library of R, which provides a baseline benchmark with sequential 
implementation. Table 2 lists the execution time of these three steps 
with R on a single node. It can be observed that Step (5) is 
significantly more time consuming than the other two steps, and 
may potentially become a bottleneck of the analysis workflow as 
we apply it to larger-scale datasets. Therefore, we provide a parallel 
implementation of the “Fruchterman-Reingold” layout algorithm 
[16] to speed up the whole workflow. Since the algorithm involves
iterative computation, our implementation is based on Twister,
which provides better performance than Hadoop for iterative



algorithms [14]. The parallel “Fruchterman-Reingold” algorithm 
(MRFR) is given in Figure 7. 

Table 2. Execution time (seconds) for Step (4) - (6) 
(4) Community
Detection

(5) Graph Layout
(500 iterations) (6) Visualization

3.4 4508.3 1.6 

The idea of the “Fruchterman-Reingold” algorithm is to compute 
the layout of a graph by simulating the behavior of a physical 
system where vertices of the graph are taken as atomic particles, 
and edges are taken as springs. A repulsive force exists between 
each pair of atomic particles, which tends to push them away from 
each other. An attractive force exists on each spring, which tends 
to pull the vertices at the two ends closer to each other. Both forces 
are defined as functions of distances between vertices. Therefore, 
starting from an initial state of random layout, in each iteration, 
disconnected vertices are pushed further apart, and vertices 
connected with edges are pulled closer together. Over multiple 
iterations, the whole system eventually evolves to a ‘low-energy’ 
state. Besides the forces, a “temperature” parameter is used to limit 
the maximum displacement of vertices in each iteration. The 
temperature eventually ‘cools’ down as iterations go. 

The whole Step (5) is also implemented as a query-and-analyze 
process. To facilitate this step, we modified get-retweet-edges to 
get get-retweet-adjmtx, a new query that generates the adjacency 
matrix of the retweet network instead of only the edges. This query 
outputs a list of lines, and each line is in the form of ‘<vertex ID> 
<neighbor vertex ID> <neighbor vertex ID> …’ i.e., a vertex ID 
followed by a list of IDs of other vertices that are connected with 
this vertex by edges. After executing get-retweet-adjmtx, the 
query-analysis engine partitions the adjacency matrix into multiple 
sub-graphs, each containing a subset of vertices associated with 
their neighbors. Then an iterative MapReduce job is scheduled on 
Twister to process these sub-graphs in parallel, using the functions 
given in Figure 7. The whole job works as follows: during job 
initialization time, an initial random layout of the whole graph is 
broadcasted to all the mappers. Each mapper reads in a sub-graph 
during task initialization time, then saves it in memory for usage 
across all iterations. Within every iteration, each mapper receives 
the global layout of the whole graph from the last iteration through 
its input <key, value> pair. Then for each vertex in the sub-graph, 
the mapper first calculates its displacement based on the repulsive 
forces it receives from every other vertex, and again based on the 
attractive forces it receives from its neighbors, and finally decides 
its total displacement by taking the temperature into consideration. 
Then a new layout of the sub-graph is generated based on the 
displacements, and output as an intermediate result from the 
mapper. The reducer collects the output from all mappers to 
generate the global layout. If the maximum number of iterations is 
reached, the reducer will output the global layout as the final result. 
Otherwise, the global layout is broadcasted to all mappers for the 
next iteration. 

Figure 8 illustrates the per-iteration execution time and speed-ups 
of MRFR under different levels of parallelism. It is obvious that 
MRFR can effectively speed up the graph layout step. Specifically, 
with 64 mappers on 8 nodes, MRFR runs 15 times faster than the 
sequential implementation in R, completing 500 iterations within 
300 seconds. However, MRFR does not achieve very good 
scalability for the 2010 retweet network, mainly because the 
amount of computation required in mappers is not large enough 
compared to the scheduling and communication overhead. For 
example, in case of 64 mappers, the slowest mapper finishes in 

250ms, while the total overhead stays consistently at about 350ms 
across different numbers of mappers. Figure 9 shows the final 
visualization of the retweet network using the layout generated by 
MRFR. The layout is almost the same as the plot in [9], with only 
a slight difference caused by a different initial random layout. As 
identified in [9], the red cluster is made of 93% right leaning 
(conservative) users, and the blue cluster is made of 80% left 
leaning (progressive) users. Since we generate the same result as 
[9] in each step of the analysis workflow, our solution on
IndexedHBase is validated.

Figure 7. Parallel Fruchterman-Reingold algorithm using 
iterative MapReduce. 

Figure 8. Per-iteration execution 
time for MRFR. 

Figure 9. Final plot of the 
retweet network. 

3.3 Extending Analysis to Data in 2012 
Here we extend the analysis workflow in Figure 5 to a later dataset 
collected during the six weeks (09/24/2012 to 11/06/2012) before 
the 2012 U.S. presidential election, and verify if the corresponding 



retweet network demonstrates a similar polarized pattern. The 
average data size for each day in 2012 is about 6 times larger than 
2010.  
Step (1) still starts from #p2 and #tcot. Step (2) spends 142 seconds 
in mining related hashtags for #p2, and 191 seconds for #tcot. The 
number of tweets analyzed is 160,934 and 364,825 respectively. In 
total, 66 related hashtags are found (see Table 3 in the appendix). 
In Step (3), 80 mappers need 150 seconds to analyze 2,360,361 
politically related tweets, and the result is a retweet network that is 
20 times larger, with 477,111 vertices and 665,599 edges. 

Step (4) requires 2402 seconds on R to complete community 
detection for this large network. In Step (5), it takes as long as 6044 
seconds to finish only one iteration of the Fruchterman-Reingold 
algorithm on R. This demonstrates that due to the fast growth of 
data volume, sequential algorithms quickly become infeasible for 
social data analysis scenarios. In order to address this challenge, we 
use more mappers in MRFR to complete Step (5). Figure 10 
illustrates the per-iteration execution time and speed-ups of MRFR 
for the 2012 retweet network. The near-linear scalability clearly 
demonstrates that MRFR is especially good at handling large 
networks. In particular, using 256 mappers on 32 nodes, MRFR can 
finish one iteration 355 times faster than the sequential 
implementation in R. Step (6) runs for 32 seconds on R, and Figure 
11 shows the final plot of the two largest communities of the 
retweet network. On the one hand, we can still observe a clearly 
segregated political structure in the 2012 network; on the other 
hand, the two sides also seem to demonstrate a ‘merging’ trend by 
having more edges reaching out to each other. 

 
Figure 10. Per-iteration execution 

time of MRFR (2012). 
Figure 11. Final plot of the 

retweet network (2012). 

4. RELATED WORK 
For details about the data loading, indexing, and query evaluation 
strategies of IndexedHBase, please refer to [17]. For a list of other 
social media data analysis projects that can be supported by 
IndexedHBase, please refer to [6, 7, 8, 11, 23, 24, 33]. 

DataStax (Cassandra) [10] and Riak [25] are two other systems that 
also use distributed NoSQL databases for data storage and in 
addition support queries about data subsets with text and secondary 
indices. However, since Cassandra does not support range scans 
very well, it is not suitable for several important use cases in social 
data analysis, e.g. range queries about memes in the form of 
‘#occupy*’. Moreover, the indexing mechanisms in these systems 
are designed mainly for search purposes, and thus are neither 
customizable nor flexible enough for efficient evaluation of the 
temporal queries and analyses in Truthy. As demonstrated in [17], 
the lightweight MapReduce framework of Riak cannot handle the 
result size of the queries in Truthy. 

Hadoop++ [12], HAIL [13], and Eagle-Eyed Elephant [15] are 
systems that try to extend the Hadoop [3] system with various 
indexing mechanisms to facilitate MapReduce queries. However, 

the queries targeted by these systems do not cover sophisticated 
analytics that may involve iterative computation. Besides, they all 
schedule MapReduce tasks based on data blocks or splits (or at least 
‘relevant’ splits) stored on HDFS, and tasks may have to scan 
irrelevant data during query evaluation. In contrast, by leveraging 
HBase for efficient random access of data records, IndexedHBase 
can dynamically adjust the number of MapReduce tasks in a job 
according to the exact number of records in the target data subsets, 
and the tasks only need to access relevant data records to produce 
the final result. 

HadoopDB [1] provides a hybrid solution that can utilize the 
indexing techniques provided by relational databases to achieve 
efficient query evaluation. However, HadoopDB applies deep 
changes to the Hadoop framework, and forces the use of relational 
databases in a parallel architecture, which is difficult to configure 
and maintain. The SQL queries supported by HadoopDB also do 
not cover sophisticated iterative analysis algorithms. 

By using Spark [35] as the execution engine and applying various 
optimizations to its in-memory processing model, Shark [34] is able 
to support both efficient SQL queries and sophisticated iterative 
analytics at a large scale. Compared with Shark, IndexedHBase 
supports efficient fine-grained data operations, putting an emphasis 
on building suitable index structures to facilitate location of target 
data subsets. IndexedHBase can be integrated with Shark, and help 
further improve the performance of analysis jobs by only loading 
relevant data records as RDDs in Spark. The columnar storage of 
table data used by both Shark and Dremel [19] are inspiring to 
IndexedHBase in terms of more efficient query evaluation and 
iterative analyses. 

To the best of our knowledge, our algorithm in Figure 7 is the first 
iterative MapReduce implementation for the Fruchterman-
Reingold layout algorithm. There are previous efforts on 
parallelizing this algorithm with MPI [20] and GPUs [26], and we 
may consider extending our solution with the usage of GPUs on 
each node to handle larger-scale problems. 

5. CONCLUSIONS AND FUTURE WORK 
In the end we gained three important lessons from our experience 
with IndexedHBase. First, flexible indexing mechanisms and 
efficient random access to single data records are two critical 
factors for fast location of target data subsets. Second, index data is 
not only useful for query evaluation, but also valuable for analysis 
and mining purposes. Finally, social data analysis workflows 
normally consist of multiple tasks that are suitable for different 
processing patterns. As such, dynamically adopting different 
frameworks to handle different tasks is crucial to achieve efficient 
processing of the whole workflow. 

There are two major directions that we consider worthy of future 
work. First, we will integrate IndexedHBase with other parallel 
processing frameworks like Giraph [2] to handle more variations in 
the computation pattern of social data analysis tasks. Second, we 
will try to extend IndexedHBase with a high level language such as 
Pig [5] to facilitate composition of complex workflows. 
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