
Portable Parallel Programming on Cloud and HPC: Scientific Applications of
Twister4Azure

Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, Judy Qiu
School of Informatics and Computing

Indiana University, Bloomington.
{tgunarat, zhangbj, taklwu, xqiu}@indiana.edu

Abstract— Recent advancements in data intensive computing
for science discovery are fueling a dramatic growth in use of
data-intensive iterative computations. The utility computing
model introduced by cloud computing combined with the rich
set of cloud infrastructure services offers a very attractive en-
vironment for scientists to perform such data intensive compu-
tations. The challenges to large scale distributed computations
on clouds demand new computation frameworks that are spe-
cifically tailored for cloud characteristics in order to easily and
effectively harness the power of clouds. Twister4Azure is a
distributed decentralized iterative MapReduce runtime for
Windows Azure Cloud. It extends the familiar, easy-to-use
MapReduce programming model with iterative extensions,
enabling a wide array of large-scale iterative data analysis for
scientific applications on Azure cloud. This paper presents the
applicability of Twister4Azure with highlighted features of
fault-tolerance, efficiency and simplicity. We study three data-
intensive applications � two iterative scientific applications,
Multi-Dimensional Scaling and KMeans Clustering; one data–
intensive pleasingly parallel scientific application, BLAST+
sequence searching. Performance measurements show compa-
rable or a factor of 2 to 4 better results than the traditional
MapReduce runtimes deployed on up to 256 instances and for
jobs with tens of thousands of tasks.

Keywords- Iterative MapReduce, Cloud Computing, HPC,
Scientific applications

I. INTRODUCTION

The current scientific computing landscape is vastly
populated by the growing set of data-intensive computations
that require enormous amounts of computational as well as
storage resources and novel distributed computing
frameworks. The pay-as-you-go Cloud computing model
provides an option for the computational and storage needs
of such computations. The new generation of distributed
computing frameworks such as MapReduce focuses on
catering to the needs of such data-intensive computations.

Iterative computations are at the core of the vast majority
of scientific computations. Many important data intensive
iterative scientific computations can be implemented as
iterative computation and communication steps, in which
computations inside an iteration are independent and are
synchronized at the end of each iteration through reduce and
communication steps, making it possible for individual
iterations to be parallelized using technologies such as
MapReduce. Examples of such applications include
dimensional scaling, many clustering algorithms, many
machine learning algorithms, and expectation maximization

applications, among others. The growth of such data
intensive iterative computations in number as well as
importance is driven partly by the need to process massive
amounts of data and partly by the emergence of data
intensive computational fields, such as bioinformatics,
chemical informatics and web mining.

Twister4Azure is a distributed decentralized iterative
MapReduce runtime for Windows Azure Cloud that was
developed utilizing Azure cloud infrastructure services.
Twister4Azure extends the familiar, easy-to-use MapReduce
programming model with iterative extensions, enabling a
wide array of large-scale iterative data analysis and scientific
applications to utilize Azure platform easily and efficiently
in a fault-tolerant manner. Twister4Azure effectively utilizes
the eventually-consistent, high-latency Azure cloud services
to deliver performance that is comparable to traditional
MapReduce runtimes for non-iterative MapReduce. It
outperforms traditional MapReduce runtimes for iterative
MapReduce computation. Twister4Azure has minimal
management & maintenance overheads and provides users
with the capability to dynamically scale up or down the
amount of computing resources. Twister4Azure takes care of
almost all the Azure infrastructure (service failures, load
balancing, etc) and coordination challenges, and frees users
from having to deal with cloud services. Window Azure
claims to allow the users to “Focus on your applications, not
the infrastructure.” Twister4Azure take it one step further
and lets users focus only on the application logic without
worrying about the application architecture.

Applications of Twister4Azure can be categorized as
three classes of application patterns. First are the Map only
applications, which are also called pleasingly (or
embarrassingly) parallel applications. Example of this type
of applications include Monte Carlo simulations, BLAST+
sequence searches, parametric studies and most of the data
cleansing and pre-processing applications. Section VI
analyzes the BLAST+[1] Twister4Azure application.

The second type of applications includes the traditional
MapReduce type applications, which utilize the reduction
phase and other features of MapReduce. Twister4Azure
contains sample implementations of SmithWatermann-
GOTOH (SWG)[2] pairwise sequence alignment and Word
Count as traditional MapReduce type applications.

The third and most important type of applications
Twister4Azure supports is the iterative MapReduce type
applications. As mentioned above, there exist many data-
intensive scientific computation algorithms that rely on
iterative computations, wherein each iterative step can be
easily specified as a MapReduce computation. Section IV

97

and V present detailed analysis of Kmeans Clustering and
MDS iterative MapReduce implementations. Twister4Azure
also contains an iterative MapReduce implementation of
PageRank and we are actively working on implementing
more iterative scientific applications using Twister4Azure.

Developing Twister4Azure was an incremental process,
which began with the development of pleasingly parallel
cloud programming frameworks[3] for bioinformatics
applications utilizing cloud infrastructure services.
MRRoles4Azure[4] MapReduce framework for Azure cloud
was developed based on the success of pleasingly parallel
cloud frameworks and was released in December 2010. We
started working on Twister4Azure to fill the void of distrib-
uted parallel programming frameworks in the Azure envi-
ronment (as of June 2010) and the first public beta release of
Twister4Azure[5] occurred in May 2011.

II. BACKGROUND

A. MapReduce
The MapReduce[6] data-intensive distributed computing

paradigm was introduced by Google as a solution for pro-
cessing massive amounts of data using commodity clusters.
MapReduce provides an easy-to-use programming model
that features fault tolerance, automatic parallelization,
scalability and data locality-based optimizations. Apache
Hadoop[7] MapReduce is a widely used open-source imple-
mentation of the Google MapReduce distributed data
processing framework.

B. Twister
The Twister[8] iterative MapReduce framework is an

expansion of the traditional MapReduce programming mod-
el, which supports traditional as well as iterative MapRe-
duce data-intensive computations. Twister supports MapRe-
duce in the manner of “configure once, and run many time”.
During the configuration stage, static data is configured and
loaded into Map or Reduce tasks, and then reused through
the iterations. In each iteration, the data is first mapped in
the compute nodes, and reduced, then combined back to the
driver node (control node). With these features, Twister
supports iterative MapReduce computations efficiently
when compared to other traditional MapReduce runtimes
such as Hadoop[9]. Fault detection and recovery are also
supported between the iterations. In this paper we use the
java implementation of Twister and identify it as Java
HPCTwister.

Java HPCTwister has one driver node for controlling
and the Map and Reduce tasks are implemented as working
threads managed by daemon process on each worker node.
Daemons communicate with the driver node and with each
other through messages. For command, communication and
data transfers, Twister uses a Publish/Subscribe messaging
middleware system and ActiveMQ[10] is used for the cur-
rent experiments. Twister does not currently have an inte-
grated distributed file system and the data distribution and
management are operated through scripts.

C. Microsoft Azure platform
The Microsoft Azure platform [16] is a cloud computing

platform that offers a set of cloud computing services.
Windows Azure Compute allows the users to lease Windows
virtual machine instances and offers the .net runtime as the
platform through two programmable roles called Worker
Roles and Web Roles. Starting recently Azure also supports
VM roles (beta), giving the ability for users to directly
deploy virtual machine instances. Azure offers a limited set
of instances on a linear price and feature scale[11]. Azure
small instance contains one 1.6GHz CPU core with 1.75GB
memory and costs 0.12$ per hour. Medium, Large and Extra
Large instances multiply the features and the cost of small
instances by a factor of 2, 4 and 8 respectively.

The Azure Storage Queue is an eventual consistent,
reliable, scalable and distributed web-scale message queue
service that is ideal for small, short-lived, transient messages.
The Azure queue does not guarantee the order of the
messages, the deletion of messages or the availability of all
the messages for a single request, although it guarantees
eventual availability over multiple requests. Each message
has a configurable visibility timeout. Once it is read by a
client, the message will not be visible for other clients until
the visibility time expires or if the previous reader delete it.

The Azure Storage Table service offers a large-scale
eventually consistent structured storage. Azure Table can
contain a virtually unlimited number of entities (aca records
or rows) that can be up to 1MB. Entities contain properties
(aca cells), that can be up to 64KB. A table can be parti-
tioned to store across many nodes for scalability.

The Azure Storage BLOB service provides a web-scale
distributed storage service in which users can store and
retrieve any type of data through a web services interface.

D. MRRoles4Azure
Azure�BLOB�Storage

MW1 MW2 MW3 MWm

RW1 RW2

Azure�BLOB�Storage

Intermediate�
Data

(through�BLOB�
storage)

Reduce Task Int.
Data Transfer

Table

Meta-Data on
intermediate
data products

Map Workers

Reduce Workers

Mn .�. Mx .�. M3 M2 M1

Map�Task�Queue

Rk .�. Ry .�. R3 R2 R1

Reduce�Task�Queue

Client�API
Command�Line�

or�Web�UI

Map Task Meta-
Data Table

Reduce Task
Meta-Data Table

Map Task
input Data

Figure 1. MRRoles4Azure Architecture[1]

MRRoles4Azure is a distributed decentralized
MapReduce runtime for Windows Azure cloud platform that
utilizes Azure cloud infrastructure services. MRRoles4Azure
overcomes the latencies of cloud services by using
sufficiently coarser grained map and reduce tasks. It
overcomes the eventual data availability of cloud storage
services through re-trying and explicitly designing the
system so that it does not rely on the immediate availability
of data across all distributed workers. As in Figure 1

98

MRRoles4Azure uses Azure Queues for map and reduce task
scheduling, Azure Tables for metadata storage and
monitoring data storage, Azure BLOB storage for data
storage (input, output and intermediate) and the Window
Azure Compute worker roles to perform the computations.

In order to withstand the brittleness of cloud
infrastructures and to avoid potential single point failures,
MR4Azure was designed as a decentralized control
architecture which does not rely on a central coordinator or a
client side driver. MR4Azure provides users with the
capability to dynamically scale up/down the number of
computing resources. The Map and Reduce tasks of the
MR4Azure runtime are dynamically scheduled using global
queues achieving natural load balancing given sufficient
amount of tasks. MR4Azure handles task failures and slower
tasks through re-execution and duplicate executions respec-
tively. MapReduce architecture requires the reduce tasks to
ensure the receipt of all the intermediate data products from
Map tasks before beginning the reduce phase. Since ensuring
such a collective decision is not possible with the direct use
of eventual consistent tables, MRRoles4Azure uses
additional data structures on top of Azure Tables for this
purpose. Gunarathne et al.[1] presents more detailed descrip-
tion about MRRoles4Azure and show that MRRoles4Azure
performs comparably to the other popular MapReduce
runtimes.

III. TWISTER4AZURE – ITERATIVE MAPREDUCE

Twister4Azure extends the MRRoles4Azure to support
iterative MapReduce executions, enabling a wide array of
large-scale iterative data analysis and scientific applications
to easily and efficiently utilize the Azure cloud platform in a
fault-tolerant manner. Twister4Azure utilizes the scalable,
distributed and highly-available Azure cloud services as the
underlying building blocks and employs a decentralized con-
trol architecture avoiding single point failures.

A. Twister4Azure Programming model
There exists a significant amount of data analysis as well

as scientific computation algorithms that rely on iterative
computations, where each iterative step can easily be
specified as a MapReduce computation. Typical data-
intensive iterative computations follow the structure given in
Code 1. We can identify two main types of data in these
computations, the loop invariant input data and the loop
variant delta values. Delta values are the result or a
representation of the result of processing the input data in
each iteration. These delta values are used in the computation
of the next iteration. One example of such delta values would
be the centroids in a KMeans Clustering computation (sec-
tion IV). Single iterations of such computations are easy to
parallelize by processing the data points or blocks of data
points independently in parallel and performing
synchronization between the iterations through
communication steps.

Typical data-intensive iterative computations can be easi-
ly parallelized using the Twister4Azure iterative map reduce
model. Twister4Azure will generate map tasks for each data
block (line 5-7 in Code 1) and each map task will calculate a

partial result, which will be communicated to the respective
reduce tasks. The typical number of reduce tasks will be
orders of magnitude less than the number of map tasks.
Reduce tasks (line 8) will perform any necessary
computations, combine the partial results received and output
part of the final result. A single merge task will merge the
results emitted by the reduce tasks and evaluate the loop
conditional function (line 8 and line 4), often comparing the
new delta results with the older delta results. The new delta
output of the merge tasks will then be broadcasted to all the
map tasks in the next iteration. Figure 2 presents the flow of
the Twister4Azure programming model.

�
Code 1 Typical data-intensive iterative computation
1: k � 0;
2: MAX � maximum iterations
3: �[0] � initial delta value
4: while (k< MAX_ITER || f(�[k], �[k-1]))
5: foreach datum in data
6: �[datum] � process (datum, �[k])
7: end foreach
8: �[k+1] � combine(�[])
9: k � k+1
10: end while

1) Map and Reduce API
Twister4Azure extends the map and reduce functions of

traditional MapReduce to include the broadcast data (delta
values) as an input parameter. The broadcast data is provided
as follows to the Map and Reduce task as a list of key-value
pairs.

Map(<key>, <value>, list_of <key,value>)
Reduce(<key>, list_of <value>, list_of <key,value>)

2) Merge
Twister4Azure introduces Merge as a new step to the

MapReduce programming model to support iterative
applications; it executes after the Reduce step. Merge Task
receives all the Reduce outputs and the broadcast data for the
current iteration as the inputs. There can only be one merge
task for a MapReduce job. With merge, the overall flow of
the iterative MapReduce computation flow would look as
follows.

Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge
Since Twister4Azure does not have a centralized driver

to take control decisions, the Merge step serves as the “loop-
test” in the Twister4Azure decentralized architecture. Users
can add a new iteration, finish the job or schedule a new
MapReduce job from the Merge task. These decisions can be

Reduce

Reduce

Merge
Add�

Iteration? No

Map Combine

Map Combine

Map Combine

Data�Cache

Yes

Hybrid�scheduling�of�the�new�iteration

Job�Start

Job�Finish

Broadcast

Figure 2. Twister4Azure programming model

99

made based on the number of iterations or on comparisons of
the results from the previous iteration and the current
iteration, such as the k-value difference between iterations
for KMeansClustering. Users can use the results of the
current iteration and the broadcast data to make these
decisions. It is possible to specify the output of merge task as
the broadcast data of the next iteration.

Merge(list_of <key,list_of<value>>,list_of <key,value>)

B. Data Cache
Twister4Azure In-Memory DataCache caches the loop-

invariant (static) data across iterations in the memory of
worker roles. Data caching avoids the download, loading and
parsing cost of loop invariant input data, which gets reused
in the iterations. These data products are comparatively
larger sized and consist of traditional MapReduce key-value
pairs. Twister4Azure maintains a single in-memory data
cache storage per worker-role shared across map, reduce and
merge workers, allowing the reuse of cached data across
different tasks as well as across any MapReduce application
within the same job. The caching of loop-invariant data gives
significant speedups for the data-intensive iterative
MapReduce applications. Broadcast data also utilize the data
cache to optimize the data broadcasting as mentioned in
Subsection D.

Twister4Azure also supports disk-based caching of the
Azure Blobs. Twister4Azure stores all the files it downloads
from the Blob storage in the local instance storage. Any re-
quest for a previously downloaded data product will be
served from the local disk cache.

C. Cache Aware Scheduling
In order to take maximum advantage of the data caching

for iterative computations, Map tasks of the subsequent
iterations need to be scheduled with awareness of the data
products cached in worker-roles. If the loop-invariant data
for a map task is present in the DataCache of a certain work-
er-role then that map tasks should be scheduled to that par-
ticular worker-role. Decentralized architecture of
Twister4Azure presents a challenge in this situation as
Twister4Azure does not have a central entity which has a
global view of the data products cached in the worker-roles
or has the ability to push the tasks to a specific worker-role.

As a solution to the above issue, Twister4Azure opted for
a model in which the workers pick tasks to execute based on
the data products they have in their DataCache and based on
the information that is published in to a central bulletin board
(an Azure table). Naïve implementation of this model
requires all the tasks for a particular job to be advertised,
making the bulletin board a bottleneck. We avoid this by
locally storing the executed map task execution histories
(meta-data required for execution of a map task) for the
cached data products. This allows the workers to start the
execution of the map tasks for new iteration immediately
after the workers get the information about a new iteration.
With this optimization, the bulletin board only advertises
information about the new iterations. As shown in Figure 3,
new MapReduce jobs (non-iterative and 1st iteration of
iterative) are scheduled through Azure queues.

Any tasks for an iteration that did not get scheduled in
the above manner will be added back to the task scheduling
queue by the first available worker without a matching task
for execution. This ensures the eventual completion of the
job and the fault tolerance of the tasks in the event of a
worker failure and also ensures the dynamic scalability of the
system when new workers are brought up. This mechanism
can also be used to avoid the slow executing tail tasks of the
iteration by duplicate execution in available instances.
However, handling of slow executing tasks of iterations is
still under development and is not used in the experiments
that were performed for this paper.

D. Data broadcasting
The loop variant data (� values in Code 1) needs to

broadcasted to all the tasks in an iteration. With
Twister4Azure users can specify broadcast data for iterative
as well as non-iterative jobs. In typical data-intensive
iterative computations, the loop-variant data (�) is orders of
magnitude smaller than the loop-invariant data. Currently
Twister4Azure uses the Azure blob storage to communicate
the broadcast data. Twister4Azure supports caching of
broadcast data ensuring that only a single retrieval of
Broadcast data occurs per node per iteration. This increases
the efficiency of broadcasting when there are more than one
map/reduce/merge worker per worker-role and when there
are multiple waves of map tasks per iteration. Some of our
experiments had more than 16 such tasks per worker-role.

E. Intermediate data communication
MRRoles4Azure uses the Azure blob storage to store

intermediate data products and the Azure tables to store
meta-data about intermediate data products, which per-
formed well for non-iterative applications. Based on our ex-
perience, tasks in iterative MapReduce jobs are of relatively
finer granular making the intermediate data communication
overhead more prominent. They produce a large number of
smaller intermediate data products causing the Blob storage
based intermediate data transfer model to under-perform.
Hence, we opted for a hybrid model, in which smaller data
products are transferred through the Azure tables. Twist-
er4Azure uses the intermediate data product meta-data table
entry itself to store the intermediate data products up to a
certain size (currently 64kb which is the limit for a single
item in an Azure table entry) and use the blob storage for the
data products that are larger than that limit. Additionally in

Map�
1

Map�
2

Map�
n

Map�Workers

Red�
1

Red�
2

Red�
n

Reduce�Workers

In�Memory�Data�Cache

Map�Task�Meta�Data�Cache

Worker�Role

Scheduling�Queue

Job�Bulletin�Board�+������
In�Memory�Cache�+�
Execution�History

New�Iteration

Left�over�tasks�
that�did�not�get�
scheduled�through�
bulleting�board.�

New�Job

Figure 3. Cache Aware Hybrid Scheduling

100

Twister4Azure, all data communication is performed using
asynchronous operations.

F. Other features
Twister4Azure supports typical MapReduce fault

tolerance through re-execution of failed tasks, ensuring the
eventual completion of the iterative computations.

 Twister4Azure also supports the deployment of multiple
MapReduce applications in a single deployment, making it
possible to utilize more than one MapReduce application
inside an iteration of a single job. This also enables
workflow scenarios without redeployment. Twister4Azure
also provides users with a web-based monitoring console
from which they can monitor the progress of their jobs.

IV. KMEANS CLUSTERING

Clustering is the process of partitioning a given data set
into disjoint clusters. The use of clustering and other data
mining techniques to interpret very large data sets has
become increasingly popular, with petabytes of data
becoming commonplace. The K-Means clustering[12]
algorithm has been widely used in many scientific and
industrial application areas due to its simplicity and
applicability to large data sets. We are currently working on
a scientific project that requires clustering of several
TeraBytes of data using KMeansClustering and millions of
centroids.

K-Means clustering is often implemented using an
iterative refinement technique, in which the algorithm

iterates until the difference between cluster centers in
subsequent iterations, i.e. the error, falls below a
predetermined threshold. Each iteration performs two main
steps, the cluster assignment step, and the centroids update
step. In the MapReduce implementation, assignment step is
performed in the Map Task and the update step is performed
in the Reduce task. Centroid data is broadcasted at the be-
ginning of each iteration. Intermediate data communication
is relatively costly in KMeans clustering as each Map Task
outputs data equivalent to the size of the centroids in each
iteration.

Figure 4(a) presents the Twister4Azure KMeansCluster-
ing performance on different Azure compute instance types,
with the number of map workers per instance equal to the
number of cores of the instance. We did not notice any sig-
nificant performance variations across the instances. Figure
4(b) shows that the performance scales well with the number
of iterations. The performance improvement with a higher
number of iterations in Figure 4(b) is due to the initial data
download/parsing overhead distributing over the iterations.
Figure 4(c) presents the number of map tasks executing at a
given time throughout the job. The job consisted of 256 map
tasks per iteration, generating 2 waves of map tasks per itera-
tion. The dips represent the synchronization at the end of
iterations. The gaps between the bars represent the total of
overhead of the intermediate data communication, reduce
task execution, merge task execution, data broadcasting and
the new iteration scheduling that happens between iterations.
According to the graph such overheads are relatively very

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

140

280

420

560

700

Small x 32 Medium x 16 Large x 8 Extra Large x
4

Co
st

 ($
)

Ex
ec

u�
on

 T
im

e
(s

)

Instance Type x Num Instances

Amor�zed Cost

Execu�on Time

0

10

20

30

40

50

60

0 20 40 60 80

Ti
m

e
(s

)

Number of Itera�ons

Time Per Itera�on
0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500 550

N
um

be
r o

f E
xe

cu
�n

g
M

ap
 T

as
ks

Time elapsed (s)

Figure 4. Twister4Azure KMeansClustering (20D data with 500 centroids, 32 cores). Left(a): Instance type study with 10 iterations 32 million data points
Center(b) : Time per iteration with increasing number of iterations 32 million data points.

Right(c): Twister4Azure executing Map Task histogram for 128 million data points in 128 Azure small instances

0

5

10

15

20

25

30

35

40

45

Ta
sk

 E
xe

cu
�o

n
Ti

m
e

(s
)

Map Task ID

0

200

400

600

800

1,000
Ti

m
e

(m
s)

Num Instances/Cores x Num Data Points

Twister4Azure Adjusted
0

0.2

0.4

0.6

0.8

1

1.2

32 64 96 128 160 192 224 256

Re
la

�v
e

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Instances/Cores

Twister4Azure Twister Hadoop

Figure 5. KMeansClustering Scalability. Left(a): Relative parallel efficiency of strong scaling using 128 million data points.
Center(b): Weak scaling. Workload per core is kept constant (ideal is a straight horizontal line).

Right(c) :Twister4Azure Map task execution time histogram for 128 million data points in 128 Azure small instances

101

small. Figure 5(c) depicts the execution time of MapTasks
across the whole job. The higher execution time of the tasks
in the first iteration is due to the overhead of initial data
downloading, parsing and loading, which is an indication of
the performance improvement we get in subsequent itera-
tions due to the data caching.

We also compared the Twister4Azure KMeansClustering
performance with implementations of Java HPC Twister and
Hadoop. The Java HPC Twister and Hadoop experiments
were performed in a dedicated iDataPlex cluster of Intel(R)
Xeon(R) CPU E5410 (2.33GHz) x 8 cores with 16GB
memory per compute node with Gigabit Ethernet on Linux.
Java HPCTwister results do not include the initial data dis-
tribution time. Figure 5(a) presents the relative (relative to
the smallest parallel test in 32 instances) parallel efficiency
of KMeansClustering for strong scaling, in which we keep
the amount of data constant and increase the number of in-
stances/cores. Figure 5(c) presents the execution time for
weak scaling, wherein we increase the number of compute
resources while keeping the work per core constant (work ~
number of nodes). We notice that Twister4Azure perfor-
mance scales well up to 128 nodes in both experiments and
shows minor performance degradation with 192 and 256
instances. The Twister4Azure adjusted (ta) line in Figure 5(b)
depicts the performance of Twister4Azure normalized ac-
cording to the ratio between the Kmeans sequential perfor-
mance in Azure (tsa) and the Kmeans sequential performance
in the cluster (tsc) environment calculated using the ta x
(tsc/tsa) equation. This estimation, however, does not take into

account the overheads which remain constant irrespective of
the computation time. All tests we performed using 20 di-
mensional data and 500 centroids.

V. MULTI DIMENSIONAL SCALING

The objective of multi-dimensional scaling (MDS) is to
map a data set in high-dimensional space to a user-defined
lower dimensional space with respect to the pairwise
proximity of the data points[13]. Dimensional scaling is
used mainly in the visualizing of high-dimensional data by
mapping them to two or three dimensional space. MDS has
been used to visualize data in diverse domains, including but
not limited to bio-informatics, geology, information sciences,
and marketing. We use MDS to visualize dissimilarity dis-
tances for hundreds of thousands of DNA and protein se-
quences to identify relationships.

In this paper we use Scaling by MAjorizing a
COmplicated Function (SMACOF)[14], an iterative
majorization algorithm. The input for MDS is an N*N matrix
of pairwise proximity values, where N is the number of data
points in the high-dimensional space. The resultant lower
dimensional mapping in D dimensions, called the X values,
is an N*D matrix.

BC:�Calculate�BX�
Map Reduce Merge

X:�Calculate�invV
(BX)Map Reduce Merge

Calculate�Stress
Map Reduce Merge

New�Iteration

Optional�Step

Figure 8. Twister4Azure Multi-Dimensional Scaling

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

0

200

400

600

800

1000

1200

1400

Small x 32 Medium x
16

Large x 8 Extra
Large x 4

Am
or

�z
ed

 C
os

t (
$)

Ex
ec

u�
on

 T
im

e
(s

)

Instance Type

Amor�sed Cost

Execu�on Time

0

5

10

15

20

25

30

Ta
sk

 E
xe

cu
�o

n
Ti

m
e

(s
)

Map Task ID

BCCalc StressCalc

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700

N
um

be
r o

f E
xe

cu
�n

g
M

ap
 T

as
ks

Time Elapsed (s)

BCCalc StressCalc

Figure 6. Twister4Azure MDS performance Left: Instance type study using 76800 data points, 32 instances, 20 iterations. Center: Twister4Azure MDS
individual task execution time histogram for 144384 x144384 distance matrix in 64 Azure small instances, 10 iterations Right: Twister4Azure executing Map

Task histogram for 144384 x144384 distance matrix in 64 Azure small instances, 10 iterations

0

500

1000

1500

2000

2500

Ex
ec

u�
on

 T
im

e
(s

)

Num Instances X Num Data Points

Twister4Azure Twister Twister4Azure Adjusted

0

10

20

30

40

50

5 10 15 20

Ti
m

e
(s

)

Number of Itera�ons

Time Per Itera�on
0

50

100

150

200

250

300

102400 144384 176640 204800

Ex
ec

u�
on

 T
im

e
Pe

r B
lo

ck

Number of Data Points

Twister4Azure Twister Twister4Azure Adjusted

Figure 7. Left: Weak scaling where workload per core is ~constant. Ideal is a straight horizontal line. Center : Data size scaling with 128 Azure small
instances/cores, 20 iterations. Right: Time per iteration with increasing number of iterations 30k x 30k distance matrix, 15 instances.

102

The limits of MDS are more bounded by memory size
than the CPU power. The main objective of parallelizing
MDS is to leverage the distributed memory to support
processing of larger data sets. In this paper, we implement
the parallel SMACOF algorithm described by Bae et al[15].
This results in iterating a chain of 3 MapReduce jobs, as
depicted in Figure 8. For the purposes of this paper, we
perform an unweighted mapping that results in two
MapReduce jobs steps per iteration, CalculateBC and
CalculateStress. Each BCCalc Map task generates a portion
of the total X matrix. MDS is more challenging for
Twister4Azure due to its relatively finer grained task sizes
and multiple MapReduce applications per iteration.

Figure 6(a) presents Twister4Azure MDS performance
on different Azure compute instance types, with number of
map workers per instance equal to number of cores of the
instance. The performance degraded with the larger instanc-
es, which could be due to the memory bandwidth limitations.
Figure 6(b) depicts the execution time of individual map-
tasks for 10 iterations of MDS on 64 instances. The higher
execution time of the tasks in the first iteration is due to the
overhead of initial data downloading, parsing and loading.
This overhead is relatively much higher in MDS (up to
~300% of task execution time vs ~60% in KMeans), ena-
bling Twister4Azure to provide large performance gains
relative to any non data-cached implementation. Figure 6(c)
presents the number of map tasks executing at a given time
for 10 iterations. The gaps between iterations are small, yet
relatively larger than in KMeans which depicts that the be-
tween-iteration overheads are slightly larger for MDS. Also
we can notice several tasks taking abnormally long execution
times, slowing down the whole iteration. Figure 7(c) shows
that the performance improves with a higher number of itera-
tions due to the initial data download/parsing overhead get-
ting distributed over the iterations.

We also compared the Twister4Azure MDS performance
with Java HPC Twister MDS implementation. The Java HPC
Twister experiment was performed in a dedicated large-
memory cluster of Intel(R) Xeon(R) CPU E5620 (2.4GHz) x
8 cores with 192GB memory per compute node with Gigabit
Ethernet on Linux. Java HPCTwister results do not include
the initial data distribution time. Figure 7(a) presents the
execution time for weak scaling, where we increase the
number of compute resources while keeping the work per
core constant (work ~ number of cores). We notice that
Twister4Azure exhibits acceptable encouraging perfor-
mance. Figure 7(b) shows that MDS performance scales well

with increasing data sizes. The Twister4Azure adjusted (ta)
line in Figure 7(a) and (b) depicts the performance of Twist-
er4Azure normalized according to the sequential MDS BC
calculation and Stress calculation performance ratio between
the Azure(tsa) and Cluster(tsc) environments calculated using
ta x (tsc/tsa). This estimation however does not account for the
overheads which remain constant irrespective of the compu-
tation time. In the above testing, the total number of tasks per
job ranged from 10240 to 40960, proving Twister4Azure’s
ability to support large number of tasks effectively.

VI. SEQUENCE SEARCHING USING BLAST
NCBI BLAST+ [1] is the latest version of popular

BLAST program, that is used to handle sequence similarity
searching. Queries are processed independently and have no
dependencies between them making it possible to use
multiple BLAST instances to process queries in a pleasingly
parallel manner. We performed the BLAST+ scaling
speedup performance experiment from Gunarathne, et al[3]
using Twister4Azure Blast+ to compare the performance
with Amazon EC2 classic cloud and Apache Hadoop
BLAST+ implementations. We used Azure Extra Large
instances with 8 Map workers per node for the
Twister4Azure BLAST experiments. We used a sub-set of a
real-world protein sequence data set (100 queries per map
task) as the input BLAST queries and used NCBI’s non-
redundant (NR) protein sequence database. All of the
implementations downloaded and extracted the compressed
BLAST database to a local disk of each worker prior to
beginning processing of the tasks. Twister4Azure’s ability to
specify deploy time initialization routines was used to
download and extract the database. The performance results
do not include the database distribution times.

The Twister4Azure BLAST+ absolute efficiency (Figure
9) was better than the Hadoop and EMR implementations.
Additionally the Twister4Azure performance was compara-
ble to the performance of the Azure Classic Cloud BLAST
results that we had obtained earlier. This shows that the per-
formance of BLAST+ is sustained in Twister4Azure, even
with the added complexity of MapReduce and iterative
MapReduce.

VII. RELATED WORKS
CloudMapReduce[16] for Amazon Web Services (AWS)

and Google AppEngine MapReduce[17] follow an
architecture similar to MRRoles4Azure, in which they utilize
the cloud services as the building blocks. Amazon

50%

60%

70%

80%

90%

100%

128 228 328 428 528 628 728

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Query Files

Twister4Azure

Hadoop

EC2-ClassicCloud

0

100

200

300

400

500

600

128 256 384 512 640 768

Ti
m

e
to

 P
ro

ce
ss

 a
 S

in
gl

e
Q

ue
ry

 F
ile

Number of Query Files

Twister4Azure

Apache Hadoop

EC2-ClassicCloud

Figure 9. Twister4Azure BLAST performance. Left : Time to process a single query file. Right: Absolute parallel efficiency

103

ElasticMapReduce[18] offers Apache Hadoop as a hosted
service on the Amazon AWS cloud environment. However
none of them support iterative MapReduce.

Haloop[19] extends Apache Hadoop to support iterative
applications and supports caching of loop-invariant data as
well as loop-aware scheduling. Spark[20] is a framework
implemented using Scala to support interactive MapReduce
like operations to query and process read-only data
collections, while supporting in-memory caching and re-use
of data products.

AzureBlast[21] is an implementation of parallel BLAST
on Azure environment that uses Azure cloud services with an
architecture similar to the Classic Cloud model, which is a
predecessor to Twister4Azure. CloudClustering[22] is a
prototype KMeansClustering implementation that uses Azure
infrastructure services. CloudClustering uses multiple queues
(single queue per worker) for job scheduling and supports
caching of loop-invariant data.

VIII. CONCLUSION AND FUTURE WORKS

We have developed Twister4Azure, a novel iterative
MapReduce distributed computing runtime for Azure cloud.
We have implemented three important scientific applications
using Twister4Azure – KmeansClustering, MDS and
BLAST+. Twister4Azure enables the users to easily and
efficiently perform large scale iterative data analysis for
scientific applications on a commercial cloud platform.

In developing Twister4Azure, we encounter the
challenges of scalability and fault tolerance unique to
utilizing the cloud interfaces. We have developed a solution
to support multi-level caching of loop-invariant data across
iterations as well as caching of any reused data (e.g.
broadcast data) and proposed a novel hybrid scheduling
mechanism to perform cache-aware scheduling.

KmeansClustering and MDS are presented as iterative
scientific applications of Twister4Azure. Experimental
evaluation shows that Kmeans Clustering using
Twster4Azure with virtual instances outperforms Apache
Hadoop in local cluster by a factor of 2 to 4 and exhibits
performance comparable to Java HPC Twister running on a
local cluster. We consider the results presented in this paper
as one of the first or the first large-scale study of Azure per-
formance for non-trivial scientific applications.

Twister4Azure and Java HPC Twister illustrate our
roadmap to a cross platform new programming paradigm
supporting large scale data analysis, an important area for
both HPC and eScience applications.

ACKNOWLEDGMENT
This work is funded in part by the Microsoft Azure

Grant. We would like to thank Prof. Geoffrey C Fox for his
many insights and feedbacks about this work. We would also
like to thank Seung-Hee Bae for many discussions on MDS.

REFERENCES
[1] G. C. C. Camacho, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer

and T. L. Madden, "BLAST+: architecture and applications," BMC
Bioinformatics 2009, 10:421, 2009.

[2] J. Ekanayake, T. Gunarathne, and J. Qiu, "Cloud Technologies for
Bioinformatics Applications," Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, pp. 998-1011, 2011.

[3] T. Gunarathne, T.-L. Wu, J. Y. Choi, S.-H. Bae, and J. Qiu, "Cloud
computing paradigms for pleasingly parallel biomedical
applications," Concurrency and Computation: Practice and
Experience,, 2011. doi: 10.1002/cpe.1780

[4] T. Gunarathne, W. Tak-Lon, J. Qiu, and G. Fox, "MapReduce in the
Clouds for Science," in IEEE 2nd International Conference on Cloud
Computing Technology and Science (CloudCom), 2010, pp. 565-572.

[5] "Twister4Azure". http://salsahpc.indiana.edu/twister4azure/(7/25/11)
[6] J. Dean and S. Ghemawat, "MapReduce: simplified data processing

on large clusters," Commun. ACM, vol. 51, pp. 107-113, 2008.
[7] "Apache Hadoop,": http://hadoop.apache.org/core/. (7/25/11)
[8] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and G.Fox,

"Twister: A Runtime for iterative MapReduce," 1st Workshop on
MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010, Chicago, Illinois.

[9] B. Zhang, Y. Ruan, T.L. Wu, J. Qiu, A. Hughes, and G.C. Fox,
"Applying Twister to Scientific Applications," presented at the
CloudCom 2010, IUPUI Conference Center Indianapolis, 2010.

[10] "Apache ActiveMQ" : http://activemq.apache.org/(7/25/2011)
[11] "Windows Azure Compute." (7/25/2011)

http://www.microsoft.com/windowsazure/features/compute/
[12] S. Lloyd, "Least squares quantization in PCM," Information Theory,

IEEE Transactions on, vol. 28, pp. 129-137, 1982.
[13] J. B. Kruskal and M. Wish, Multidimensional Scaling: Sage

Publications Inc., 1978.
[14] J. Leeuw, "Convergence of the majorization method for

multidimensional scaling," Journal of Classification, vol. 5, pp.163,
1988.

[15] S.H. Bae, J.Y. Choi, J. Qiu, and G. C. Fox, "Dimension reduction and
visualization of large high-dimensional data via interpolation," 19th
ACM International Symposium on High Performance Distributed
Computing, Chicago, Illinois, 2010.

[16] "cloudmapreduce,"http://code.google.com/p/cloudmapreduce/
(8/20/10)

[17] "AppEngine MapReduce".: http://code.google.com/p/appengine-
mapreduce (8/20/2010)

[18] "Amazon Web Services,": http://aws.amazon.com/. (7/25/2011)
[19] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, "HaLoop: Efficient

Iterative Data Processing on Large Clusters,", 36th International
Conference on Very Large Data Bases, Singapore, 2010.

[20] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica,
"Spark: Cluster Computing with Working Sets," presented at the 2nd
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
'10), Boston, 2010.

[21] W. Lu, J. Jackson, and R. Barga, "AzureBlast: A Case Study of
Developing Science Applications on the Cloud," 1st Workshop on
Scientific Cloud Computing , HPDC.Chicago, IL, 2010.

[22] A. Dave, W. Lu, J. Jackson, and R. Barga, "CloudClustering: Toward
an iterative data processing pattern on the cloud," in First
International Workshop on Data Intensive Computing in the Clouds,
Anchorage, Alaska, 2011.

104

