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Abstract— Recent advancements in data intensive computing 
for science discovery are fueling a dramatic growth in use of 
data-intensive iterative computations. The utility computing 
model introduced by cloud computing combined with the rich 
set of cloud infrastructure services offers a very attractive en-
vironment for scientists to perform such data intensive compu-
tations. The challenges to large scale distributed computations 
on clouds demand new computation frameworks that are spe-
cifically tailored for cloud characteristics in order to easily and 
effectively harness the power of clouds.  Twister4Azure is a 
distributed decentralized iterative MapReduce runtime for 
Windows Azure Cloud. It extends the familiar, easy-to-use 
MapReduce programming model with iterative extensions, 
enabling a wide array of large-scale iterative data analysis for 
scientific applications on Azure cloud. This paper presents the 
applicability of Twister4Azure with highlighted features of 
fault-tolerance, efficiency and simplicity.  We study three data-
intensive applications � two iterative scientific applications, 
Multi-Dimensional Scaling and KMeans Clustering; one data–
intensive pleasingly parallel scientific application, BLAST+ 
sequence searching. Performance measurements show compa-
rable or a factor of 2 to 4 better results than the traditional 
MapReduce runtimes deployed on up to 256 instances and for 
jobs with tens of thousands of tasks. 

Keywords- Iterative MapReduce, Cloud Computing, HPC, 
Scientific applications 

I.  INTRODUCTION

The current scientific computing landscape is vastly 
populated by the growing set of data-intensive computations 
that require enormous amounts of computational as well as 
storage resources and novel distributed computing 
frameworks.  The pay-as-you-go Cloud computing model 
provides an option for the computational and storage needs 
of such computations. The new generation of distributed 
computing frameworks such as MapReduce focuses on 
catering to the needs of such data-intensive computations. 

Iterative computations are at the core of the vast majority 
of scientific computations. Many important data intensive 
iterative scientific computations can be implemented as 
iterative computation and communication steps, in which 
computations inside an iteration are independent and are 
synchronized at the end of each iteration through reduce and 
communication steps, making it possible for individual 
iterations to be parallelized using technologies such as 
MapReduce. Examples of such applications include 
dimensional scaling, many clustering algorithms, many 
machine learning algorithms, and expectation maximization 

applications, among others. The growth of such data 
intensive  iterative computations in number as well as 
importance is driven partly by the need to process massive 
amounts of data and partly by the emergence of data 
intensive computational fields, such as bioinformatics, 
chemical informatics and web mining. 

Twister4Azure is a distributed decentralized iterative 
MapReduce runtime for Windows Azure Cloud that was 
developed utilizing Azure cloud infrastructure services. 
Twister4Azure extends the familiar, easy-to-use MapReduce 
programming model with iterative extensions, enabling a 
wide array of large-scale iterative data analysis and scientific 
applications to utilize Azure platform easily and efficiently 
in a fault-tolerant manner. Twister4Azure effectively utilizes 
the eventually-consistent, high-latency Azure cloud services 
to deliver performance that is comparable to traditional 
MapReduce runtimes for non-iterative MapReduce. It 
outperforms traditional MapReduce runtimes for iterative 
MapReduce computation. Twister4Azure has minimal 
management & maintenance overheads and provides users 
with the capability to dynamically scale up or down the 
amount of computing resources. Twister4Azure takes care of 
almost all the Azure infrastructure (service failures, load 
balancing, etc) and coordination challenges, and frees users 
from having to deal with cloud services. Window Azure 
claims to allow the users to “Focus on your applications, not 
the infrastructure.” Twister4Azure take it one step further 
and lets users focus only on the application logic without 
worrying about the application architecture. 

Applications of Twister4Azure can be categorized as 
three classes of application patterns. First are the Map only 
applications, which are also called pleasingly (or 
embarrassingly) parallel applications. Example of this type 
of applications include Monte Carlo simulations, BLAST+ 
sequence searches, parametric studies and most of the data 
cleansing and pre-processing applications. Section VI 
analyzes the BLAST+[1] Twister4Azure application.  

The second type of applications includes the traditional 
MapReduce type applications, which utilize the reduction 
phase and other features of MapReduce. Twister4Azure 
contains sample implementations of SmithWatermann-
GOTOH (SWG)[2] pairwise sequence alignment and Word 
Count as traditional MapReduce type applications.  

The third and most important type of applications 
Twister4Azure supports is the iterative MapReduce type 
applications. As mentioned above, there exist many data-
intensive scientific computation algorithms that rely on 
iterative computations, wherein each iterative step can be 
easily specified as a MapReduce computation. Section IV 
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and V present detailed analysis of Kmeans Clustering and 
MDS iterative MapReduce implementations. Twister4Azure 
also contains an iterative MapReduce implementation of 
PageRank and we are actively working on implementing 
more iterative scientific applications using Twister4Azure. 

Developing Twister4Azure was an incremental process, 
which began with the development of pleasingly parallel 
cloud programming frameworks[3] for bioinformatics 
applications utilizing cloud infrastructure services. 
MRRoles4Azure[4] MapReduce framework for Azure cloud 
was developed based on the success of pleasingly parallel 
cloud frameworks and was released in December 2010. We 
started working on Twister4Azure to fill the void of distrib-
uted parallel programming frameworks in the Azure envi-
ronment (as of June 2010) and the first public beta release of 
Twister4Azure[5] occurred in May 2011.  

II. BACKGROUND

A. MapReduce
The MapReduce[6] data-intensive distributed computing

paradigm was introduced by Google as a solution for pro-
cessing massive amounts of data using commodity clusters. 
MapReduce provides an easy-to-use programming model 
that features fault tolerance, automatic parallelization, 
scalability and data locality-based optimizations. Apache 
Hadoop[7] MapReduce is a widely used open-source imple-
mentation of the Google MapReduce distributed data 
processing framework. 

B. Twister
The Twister[8] iterative MapReduce framework is an

expansion of the traditional MapReduce programming mod-
el, which supports traditional as well as iterative MapRe-
duce data-intensive computations. Twister supports MapRe-
duce in the manner of “configure once, and run many time”. 
During the configuration stage, static data is configured and 
loaded into Map or Reduce tasks, and then reused through 
the iterations. In each iteration, the data is first mapped in 
the compute nodes, and reduced, then combined back to the 
driver node (control node). With these features, Twister 
supports iterative MapReduce computations efficiently 
when compared to other traditional MapReduce runtimes 
such as Hadoop[9]. Fault detection and recovery are also 
supported between the iterations. In this paper we use the 
java implementation of Twister and identify it as Java 
HPCTwister. 

Java HPCTwister has one driver node for controlling 
and the Map and Reduce tasks are implemented as working 
threads managed by daemon process on each worker node. 
Daemons communicate with the driver node and with each 
other through messages. For command, communication and 
data transfers, Twister uses a Publish/Subscribe messaging 
middleware system and ActiveMQ[10] is used for the cur-
rent experiments. Twister does not currently have an inte-
grated distributed file system and the data distribution and 
management are operated through scripts.  

C. Microsoft Azure platform
The Microsoft Azure platform [16] is a cloud computing

platform that offers a set of cloud computing services. 
Windows Azure Compute allows the users to lease Windows 
virtual machine instances and offers the .net runtime as the 
platform through two programmable roles called Worker 
Roles and Web Roles. Starting recently Azure also supports 
VM roles (beta), giving the ability for users to directly 
deploy virtual machine instances. Azure offers a limited set 
of instances on a linear price and feature scale[11]. Azure 
small instance contains one 1.6GHz CPU core with 1.75GB 
memory and costs 0.12$ per hour. Medium, Large and Extra 
Large instances multiply the features and the cost of small 
instances by a factor of 2, 4 and 8 respectively. 

The Azure Storage Queue is an eventual consistent, 
reliable, scalable and distributed web-scale message queue 
service that is ideal for small, short-lived, transient messages. 
The Azure queue does not guarantee the order of the 
messages, the deletion of messages or the availability of all 
the messages for a single request, although it guarantees 
eventual availability over multiple requests. Each message 
has a configurable visibility timeout. Once it is read by a 
client, the message will not be visible for other clients until 
the visibility time expires or if the previous reader delete it.  

The Azure Storage Table service offers a large-scale 
eventually consistent structured storage. Azure Table can 
contain a virtually unlimited number of entities (aca records 
or rows) that can be up to 1MB. Entities contain properties 
(aca cells), that can be up to 64KB. A table can be parti-
tioned to store across many nodes for scalability.  

The Azure Storage BLOB service provides a web-scale 
distributed storage service in which users can store and 
retrieve any type of data through a web services interface.  

D. MRRoles4Azure
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Figure 1.  MRRoles4Azure Architecture[1] 

MRRoles4Azure is a distributed decentralized 
MapReduce runtime for Windows Azure cloud platform that 
utilizes Azure cloud infrastructure services. MRRoles4Azure 
overcomes the latencies of cloud services by using 
sufficiently coarser grained map and reduce tasks. It 
overcomes the eventual data availability of cloud storage 
services through re-trying and explicitly designing the 
system so that it does not rely on the immediate availability 
of data across all distributed workers. As in Figure 1 
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MRRoles4Azure uses Azure Queues for map and reduce task 
scheduling, Azure Tables for metadata storage and 
monitoring data storage, Azure BLOB storage for data 
storage (input, output and intermediate) and the Window 
Azure Compute worker roles to perform the computations. 

In order to withstand the brittleness of cloud 
infrastructures and to avoid potential single point failures, 
MR4Azure was designed as a decentralized control 
architecture which does not rely on a central coordinator or a 
client side driver. MR4Azure provides users with the 
capability to dynamically scale up/down the number of 
computing resources. The Map and Reduce tasks of the 
MR4Azure runtime are dynamically scheduled using global 
queues achieving natural load balancing given sufficient 
amount of tasks. MR4Azure handles task failures and slower 
tasks through re-execution and duplicate executions respec-
tively. MapReduce architecture requires the reduce tasks to 
ensure the receipt of all the intermediate data products from 
Map tasks before beginning the reduce phase. Since ensuring 
such a collective decision is not possible  with the direct use 
of eventual consistent tables, MRRoles4Azure uses 
additional data structures on top of Azure Tables for this 
purpose. Gunarathne et al.[1] presents more detailed descrip-
tion about MRRoles4Azure and show that MRRoles4Azure 
performs comparably to the other popular MapReduce 
runtimes. 

III. TWISTER4AZURE – ITERATIVE MAPREDUCE 

Twister4Azure extends the MRRoles4Azure to support
iterative MapReduce executions, enabling a wide array of 
large-scale iterative data analysis and scientific applications 
to easily and efficiently utilize the Azure cloud platform in a 
fault-tolerant manner. Twister4Azure utilizes the scalable, 
distributed and highly-available Azure cloud services as the 
underlying building blocks and employs a decentralized con-
trol architecture avoiding single point failures. 

A. Twister4Azure Programming model
There exists a significant amount of data analysis as well

as scientific computation algorithms that rely on iterative 
computations, where each iterative step can easily be 
specified as a MapReduce computation. Typical data-
intensive iterative computations follow the structure given in 
Code 1. We can identify two main types of data in these 
computations, the loop invariant input data and the loop 
variant delta values. Delta values are the result or a 
representation of the result of processing the input data in 
each iteration. These delta values are used in the computation 
of the next iteration. One example of such delta values would 
be the centroids in a KMeans Clustering computation (sec-
tion IV). Single iterations of such computations are easy to 
parallelize by processing the data points or blocks of data 
points independently in parallel and performing 
synchronization between the iterations through 
communication steps. 

Typical data-intensive iterative computations can be easi-
ly parallelized using the Twister4Azure iterative map reduce 
model. Twister4Azure will generate map tasks for each data 
block (line 5-7 in Code 1) and each map task will calculate a 

partial result, which will be communicated to the respective 
reduce tasks. The typical number of reduce tasks will be 
orders of magnitude less than the number of map tasks. 
Reduce tasks (line 8) will perform any necessary 
computations, combine the partial results received and output 
part of the final result. A single merge task will merge the 
results emitted by the reduce tasks and evaluate the loop 
conditional function (line 8 and line 4), often comparing the 
new delta results with the older delta results. The new delta 
output of the merge tasks will then be broadcasted to all the 
map tasks in the next iteration. Figure 2 presents the flow of 
the Twister4Azure programming model.  

�
Code 1 Typical data-intensive iterative computation 
1: k � 0; 
2: MAX � maximum iterations 
3: �[0] � initial delta value 
4: while ( k< MAX_ITER || f(�[k], �[k-1]) ) 
5:  foreach datum in data 
6: �[datum] � process (datum, �[k])
7:      end foreach 
8:      �[k+1] � combine(�[]) 
9:      k � k+1 
10: end while 

1) Map  and  Reduce API
Twister4Azure extends the map and reduce functions of

traditional MapReduce to include the broadcast data (delta 
values) as an input parameter. The broadcast data is provided 
as follows to the Map and Reduce task as a list of key-value 
pairs.  

Map(<key>, <value>, list_of <key,value>) 
Reduce(<key>, list_of <value>, list_of <key,value>)

2) Merge
Twister4Azure introduces Merge as a new step to the

MapReduce programming model to support iterative 
applications; it executes after the Reduce step. Merge Task 
receives all the Reduce outputs and the broadcast data for the 
current iteration as the inputs.  There can only be one merge 
task for a MapReduce job. With merge, the overall flow of 
the iterative MapReduce computation flow would look as 
follows. 

Map -> Combine -> Shuffle -> Sort -> Reduce -> Merge 
Since Twister4Azure does not have a centralized driver 

to take control decisions, the Merge step serves as the “loop-
test” in the Twister4Azure decentralized architecture. Users 
can add a new iteration, finish the job or schedule a new 
MapReduce job from the Merge task. These decisions can be 
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Figure 2. Twister4Azure programming model 
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made based on the number of iterations or on comparisons of 
the results from the previous iteration and the current 
iteration, such as the k-value difference between iterations 
for KMeansClustering.  Users can use the results of the 
current iteration and the broadcast data to make these 
decisions. It is possible to specify the output of merge task as 
the broadcast data of the next iteration. 

Merge(list_of <key,list_of<value>>,list_of <key,value>) 

B. Data Cache
Twister4Azure In-Memory DataCache caches the loop-

invariant (static) data across iterations in the memory of 
worker roles. Data caching avoids the download, loading and 
parsing cost of loop invariant input data, which gets reused 
in the iterations. These data products are comparatively 
larger sized and consist of traditional MapReduce key-value 
pairs.  Twister4Azure maintains a single in-memory data 
cache storage per worker-role shared across map, reduce and 
merge workers, allowing the reuse of cached data across 
different tasks as well as across any MapReduce application 
within the same job. The caching of loop-invariant data gives 
significant speedups for the data-intensive iterative 
MapReduce applications. Broadcast data also utilize the data 
cache to optimize the data broadcasting as mentioned in 
Subsection D. 

Twister4Azure also supports disk-based caching of the 
Azure Blobs. Twister4Azure stores all the files it downloads 
from the Blob storage in the local instance storage. Any re-
quest for a previously downloaded data product will be 
served from the local disk cache.  

C. Cache Aware Scheduling
In order to take maximum advantage of the data caching

for iterative computations, Map tasks of the subsequent 
iterations need to be scheduled with awareness of the data 
products cached in worker-roles. If the loop-invariant data 
for a map task is present in the DataCache of a certain work-
er-role then that map tasks should be scheduled to that par-
ticular worker-role. Decentralized architecture of 
Twister4Azure presents a challenge in this situation as 
Twister4Azure does not have a central entity which has a 
global view of the data products cached in the worker-roles 
or has the ability to push the tasks to a specific worker-role.  

As a solution to the above issue, Twister4Azure opted for 
a model in which the workers pick tasks to execute based on 
the data products they have in their DataCache and based on 
the information that is published in to a central bulletin board 
(an Azure table). Naïve implementation of this model 
requires all the tasks for a particular job to be advertised, 
making the bulletin board a bottleneck. We avoid this by 
locally storing the executed map task execution histories 
(meta-data required for execution of a map task) for the 
cached data products. This allows the workers to start the 
execution of the map tasks for new iteration immediately 
after the workers get the information about a new iteration. 
With this optimization, the bulletin board only advertises 
information about the new iterations. As shown in Figure 3, 
new MapReduce jobs (non-iterative and 1st iteration of 
iterative) are scheduled through Azure  queues.  

Any tasks for an iteration that did not get scheduled in 
the above manner will be added back to the task scheduling 
queue by the first available worker without a matching task 
for execution. This ensures the eventual completion of the 
job and the fault tolerance of the tasks in the event of a 
worker failure and also ensures the dynamic scalability of the 
system when new workers are brought up. This mechanism 
can also be used to avoid the slow executing tail tasks of the 
iteration by duplicate execution in available instances. 
However, handling of slow executing tasks of iterations is 
still under development and is not used in the experiments 
that were performed for this paper.  

D. Data broadcasting
The loop variant data (� values in Code 1) needs to

broadcasted to all the tasks in an iteration. With 
Twister4Azure users can specify broadcast data for iterative 
as well as non-iterative jobs. In typical data-intensive 
iterative computations, the loop-variant data (�) is orders of 
magnitude smaller than the loop-invariant data. Currently 
Twister4Azure uses the Azure blob storage to communicate 
the broadcast data. Twister4Azure supports caching of 
broadcast data ensuring that only a single retrieval of 
Broadcast data occurs per node per iteration. This increases 
the efficiency of broadcasting when there are more than one 
map/reduce/merge worker per worker-role and when there 
are multiple waves of map tasks per iteration. Some of our 
experiments had more than 16 such tasks per worker-role. 

E. Intermediate data communication
MRRoles4Azure uses the Azure blob storage to store

intermediate data products and the Azure tables to store 
meta-data about intermediate data products, which per-
formed well for non-iterative applications. Based on our ex-
perience, tasks in iterative MapReduce jobs are of relatively 
finer granular making the intermediate data communication 
overhead more prominent. They produce a large number of 
smaller intermediate data products causing the Blob storage 
based intermediate data transfer model to under-perform. 
Hence, we opted for a hybrid model, in which smaller data 
products are transferred through the Azure tables. Twist-
er4Azure uses the intermediate data product meta-data table 
entry itself to store the intermediate data products up to a 
certain size (currently 64kb which is the limit for a single 
item in an Azure table entry) and use the blob storage for the 
data products that are larger than that limit. Additionally in 
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Twister4Azure, all data communication is performed using 
asynchronous operations. 

F. Other features
Twister4Azure supports typical MapReduce fault

tolerance through re-execution of failed tasks, ensuring the 
eventual completion of the iterative computations.  

 Twister4Azure also supports the deployment of multiple 
MapReduce applications in a single deployment, making it 
possible to utilize more than one MapReduce application 
inside an iteration of a single job. This also enables 
workflow scenarios without redeployment.  Twister4Azure 
also provides users with a web-based monitoring console 
from which they can monitor the progress of their jobs. 

IV. KMEANS  CLUSTERING

Clustering is the process of partitioning a given data set 
into disjoint clusters.  The use of clustering and other data 
mining techniques to interpret very large data sets has 
become increasingly popular, with petabytes of data 
becoming commonplace. The K-Means clustering[12] 
algorithm has been widely used in many scientific and 
industrial application areas due to its simplicity and 
applicability to large data sets. We are currently working on 
a scientific project that requires clustering of several 
TeraBytes of data using KMeansClustering and millions of 
centroids. 

K-Means clustering is often implemented using an
iterative refinement technique, in which the algorithm 

iterates until the difference between cluster centers in 
subsequent iterations, i.e. the error, falls below a 
predetermined threshold. Each iteration performs two main 
steps, the cluster assignment step, and the centroids update 
step. In the MapReduce implementation, assignment step is 
performed in the Map Task and the update step is performed 
in the Reduce task. Centroid data is broadcasted at the be-
ginning of each iteration. Intermediate data communication 
is relatively costly in KMeans clustering as each Map Task 
outputs data equivalent to the size of the centroids in each 
iteration. 

Figure 4(a) presents the Twister4Azure KMeansCluster-
ing performance on different Azure compute instance types, 
with the number of map workers per instance equal to the 
number of cores of the instance. We did not notice any sig-
nificant performance variations across the instances. Figure 
4(b) shows that the performance scales well with the number 
of iterations. The performance improvement with a higher 
number of iterations in Figure 4(b) is due to the initial data 
download/parsing overhead distributing over the iterations. 
Figure 4(c) presents the number of map tasks executing at a 
given time throughout the job. The job consisted of 256 map 
tasks per iteration, generating 2 waves of map tasks per itera-
tion. The dips represent the synchronization at the end of 
iterations. The gaps between the bars represent the total of 
overhead of the intermediate data communication, reduce 
task execution, merge task execution, data broadcasting and 
the new iteration scheduling that happens between iterations. 
According to the graph such overheads are relatively very 
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small. Figure 5(c) depicts the execution time of MapTasks 
across the whole job. The higher execution time of the tasks 
in the first iteration is due to the overhead of initial data 
downloading, parsing and loading, which is an indication of 
the performance improvement we get in subsequent itera-
tions due to the data caching.  

We also compared the Twister4Azure KMeansClustering 
performance with implementations of Java HPC Twister and 
Hadoop. The Java HPC Twister and Hadoop experiments 
were performed in a dedicated iDataPlex cluster of Intel(R) 
Xeon(R) CPU E5410 (2.33GHz) x 8 cores with 16GB 
memory per compute node with Gigabit Ethernet on Linux. 
Java HPCTwister results do not include the initial data dis-
tribution time.  Figure 5(a) presents the relative (relative to 
the smallest parallel test in 32 instances) parallel efficiency 
of KMeansClustering for strong scaling, in which  we keep 
the amount of data constant and increase the number of in-
stances/cores. Figure 5(c) presents the execution time for 
weak scaling, wherein we increase the number of compute 
resources while keeping the work per core constant (work ~ 
number of nodes). We notice that Twister4Azure perfor-
mance scales well up to 128 nodes in both experiments and 
shows minor performance degradation with 192 and 256 
instances. The Twister4Azure adjusted (ta) line in Figure 5(b) 
depicts the performance of Twister4Azure normalized ac-
cording to the ratio between the Kmeans sequential perfor-
mance in Azure (tsa) and the Kmeans sequential performance 
in the cluster (tsc) environment calculated using  the ta x 
(tsc/tsa) equation. This estimation, however, does not take into 

account the overheads which remain constant irrespective of 
the computation time. All tests we performed using 20 di-
mensional data and 500 centroids. 

V. MULTI DIMENSIONAL SCALING

The objective of multi-dimensional scaling (MDS) is to 
map a data set in high-dimensional space to a user-defined 
lower dimensional space with respect to the pairwise 
proximity of the data points[13].  Dimensional scaling is 
used mainly in the visualizing of high-dimensional data by 
mapping them to two or three dimensional space.  MDS has 
been used to visualize data in diverse domains, including but 
not limited to bio-informatics, geology, information sciences, 
and marketing. We use MDS to visualize dissimilarity dis-
tances for hundreds of thousands of DNA and protein se-
quences to identify relationships.  

In this paper we use Scaling by MAjorizing a 
COmplicated Function (SMACOF)[14], an iterative 
majorization algorithm. The input for MDS is an N*N matrix 
of pairwise proximity values, where N is the number of data 
points in the high-dimensional space.  The resultant lower 
dimensional mapping in D dimensions, called the X values, 
is an N*D matrix. 
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The limits of MDS are more bounded by memory size 
than the CPU power. The main objective of parallelizing 
MDS is to leverage the distributed memory to support 
processing of larger data sets. In this paper, we implement 
the parallel SMACOF algorithm described by Bae et al[15]. 
This results in iterating a chain of 3 MapReduce jobs, as 
depicted in Figure 8. For the purposes of this paper, we 
perform an unweighted mapping that results in two 
MapReduce jobs steps per iteration, CalculateBC and 
CalculateStress. Each BCCalc Map task generates a portion 
of the total X matrix. MDS is more challenging for 
Twister4Azure due to its relatively finer grained task sizes 
and multiple MapReduce applications per iteration. 

Figure 6(a) presents Twister4Azure MDS performance 
on different Azure compute instance types, with number of 
map workers per instance equal to number of cores of the 
instance. The performance degraded with the larger instanc-
es, which could be due to the memory bandwidth limitations. 
Figure 6(b) depicts the execution time of individual map-
tasks for 10 iterations of MDS on 64 instances. The higher 
execution time of the tasks in the first iteration is due to the 
overhead of initial data downloading, parsing and loading. 
This overhead is relatively much higher in MDS (up to 
~300% of task execution time vs ~60% in KMeans), ena-
bling Twister4Azure to provide large performance gains 
relative to any non data-cached implementation. Figure 6(c) 
presents the number of map tasks executing at a given time 
for 10 iterations. The gaps between iterations are small, yet 
relatively larger than in KMeans which depicts that the be-
tween-iteration overheads are slightly larger for MDS. Also 
we can notice several tasks taking abnormally long execution 
times, slowing down the whole iteration. Figure 7(c) shows 
that the performance improves with a higher number of itera-
tions due to the initial data download/parsing overhead get-
ting distributed over the iterations.   

We also compared the Twister4Azure MDS performance 
with Java HPC Twister MDS implementation. The Java HPC 
Twister experiment was performed in a dedicated large-
memory cluster of Intel(R) Xeon(R) CPU E5620 (2.4GHz) x 
8 cores with 192GB memory per compute node with Gigabit 
Ethernet on Linux. Java HPCTwister results do not include 
the initial data distribution time.  Figure 7(a) presents the 
execution time for weak scaling, where we increase the 
number of compute resources while keeping the work per 
core constant (work ~ number of cores). We notice that 
Twister4Azure exhibits acceptable encouraging perfor-
mance. Figure 7(b) shows that MDS performance scales well 

with increasing data sizes.  The Twister4Azure adjusted (ta) 
line in Figure 7(a) and (b) depicts the performance of Twist-
er4Azure normalized according to the sequential MDS BC 
calculation and Stress calculation performance ratio between 
the Azure(tsa) and Cluster(tsc) environments calculated using 
ta x (tsc/tsa). This estimation however does not account for the 
overheads which remain constant irrespective of the compu-
tation time. In the above testing, the total number of tasks per 
job ranged from 10240 to 40960, proving Twister4Azure’s 
ability to support large number of tasks effectively. 

VI. SEQUENCE SEARCHING USING BLAST 
NCBI BLAST+ [1] is the latest version of popular 

BLAST program, that is used to handle sequence similarity 
searching. Queries are processed independently and have no 
dependencies between them making it possible to use 
multiple BLAST instances to process queries in a pleasingly 
parallel manner. We performed the BLAST+ scaling 
speedup performance experiment from Gunarathne, et al[3] 
using Twister4Azure Blast+ to compare the performance 
with Amazon EC2 classic cloud and Apache Hadoop 
BLAST+ implementations. We used Azure Extra Large 
instances with 8 Map workers per node for the 
Twister4Azure BLAST experiments. We used a sub-set of a 
real-world protein sequence data set (100 queries per map 
task) as the input BLAST queries and used NCBI’s non-
redundant (NR) protein sequence database. All of the 
implementations downloaded and extracted the compressed 
BLAST database to a local disk of each worker prior to 
beginning processing of the tasks. Twister4Azure’s ability to 
specify deploy time initialization routines was used to 
download and extract the database. The performance results 
do not include the database distribution times. 

The Twister4Azure BLAST+ absolute efficiency (Figure 
9) was better than the Hadoop and EMR implementations. 
Additionally the Twister4Azure performance was compara-
ble to the performance of the Azure Classic Cloud BLAST 
results that we had obtained earlier. This shows that the per-
formance of BLAST+ is sustained in Twister4Azure, even 
with the added complexity of MapReduce and iterative 
MapReduce. 

VII. RELATED WORKS 
CloudMapReduce[16] for Amazon Web Services (AWS) 

and Google AppEngine MapReduce[17] follow an 
architecture similar to MRRoles4Azure, in which they utilize 
the cloud services as the building blocks. Amazon 
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ElasticMapReduce[18] offers Apache Hadoop as a hosted 
service on the Amazon AWS cloud environment. However 
none of them support iterative MapReduce.  

Haloop[19] extends Apache Hadoop to support iterative 
applications and supports caching of loop-invariant data as 
well as loop-aware scheduling. Spark[20] is a framework 
implemented using Scala to support interactive MapReduce 
like operations to query and process read-only data 
collections, while supporting in-memory caching and re-use 
of data products. 

AzureBlast[21] is an implementation of parallel BLAST 
on Azure environment that uses Azure cloud services with an 
architecture similar to the Classic Cloud model, which is a 
predecessor to Twister4Azure. CloudClustering[22] is a 
prototype KMeansClustering implementation that uses Azure 
infrastructure services. CloudClustering uses multiple queues 
(single queue per worker) for job scheduling and supports 
caching of loop-invariant data.  

VIII. CONCLUSION AND FUTURE WORKS

We have developed Twister4Azure, a novel iterative 
MapReduce distributed computing runtime for Azure cloud. 
We have implemented three important scientific applications 
using Twister4Azure – KmeansClustering, MDS and 
BLAST+. Twister4Azure enables the users to easily and 
efficiently perform large scale iterative data analysis for 
scientific applications on a commercial cloud platform. 

In developing Twister4Azure, we encounter the 
challenges of scalability and fault tolerance unique to 
utilizing the cloud interfaces. We have developed a solution 
to support multi-level caching of loop-invariant data across 
iterations as well as caching of any reused data (e.g. 
broadcast data) and proposed a novel hybrid scheduling 
mechanism to perform cache-aware scheduling. 

KmeansClustering and MDS are presented as iterative 
scientific applications of Twister4Azure. Experimental 
evaluation shows that Kmeans Clustering using 
Twster4Azure with virtual instances outperforms Apache 
Hadoop in local cluster by a factor of 2 to 4 and exhibits 
performance comparable to Java HPC Twister running on a 
local cluster. We consider the results presented in this paper 
as one of the first or the first large-scale study of Azure per-
formance for non-trivial scientific applications. 

Twister4Azure and Java HPC Twister illustrate our 
roadmap to a cross platform new programming paradigm 
supporting large scale data analysis, an important area for 
both HPC and eScience applications.  
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