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Abstract—Data analytics is undergoing a revolution in many
scientific domains, and demands cost-effective parallel data
analysis techniques. Traditional Java-based Big Data process-
ing tools like Hadoop MapReduce are designed for commodity
CPUs. In contrast, emerging manycore processors like the
Xeon Phi have an order of magnitude greater computation
power and memory bandwidth. To harness their computing
capabilities, we propose the Harp-DAAL framework. We show
that enhanced versions of MapReduce can be replaced by
Harp, a Hadoop plug-in, that offers useful data abstractions for
both high-performance iterative computation and MPI-quality
communication, as well as drive Intel’s native DAAL library.
We select a subset of three machine learning algorithms and
implement them within Harp-DAAL. Our scalability bench-
marks ran on Knights Landing (KNL) clusters and achieved up
to 2.5 times speedup of performance over the HPC solution in
NOMAD and 15 to 40 times speedup over Java-based solutions
in Spark. We further quantify the workloads on single node
KNL with a performance breakdown at the micro-architecture
level.
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I. INTRODUCTION

In recent years, the volume and variety of data have been

collected at enormous rates. The data comes from sources

ranging from massive physics experiments and instruments

that read our DNA to a multitude of sensors that monitor

our environment. It also comes from our digitized libraries,

media streams, and personal health monitors. Many of the

primary software tools that are used to do the large-scale

data analysis were born in the Cloud. Big data processing

frameworks like Apache Hadoop are designed to run on

large-scale commodity CPU clusters connected by Ether-

net. Although using large clusters of commodity servers

is still the most cost-effective way to process petabytes

or exabytes of data, the majority of data analytics jobs

do not have tremendous workloads. Furthermore, machine

learning algorithms become increasingly common and can

easily fit into memory but require fine-grained parallelism

for high performance. Modern scale-up servers using GPUs

and Xeon Phi provide substantial processing, memory, and

I/O capabilities. Therefore small or middle-sized clusters for

Big Data analytics become an attractive approach.

In this paper, we investigate and re-design optimized

software stacks to effectively utilize scale-up servers in the

Cloud for machine learning and data analytics applications.

We conduct extensive benchmarking on the emerging In-

tel’s Many Integrated Core Architecture (MIC) based Xeon

Phi Knights Landing (KNL). Our goal is to bridge the

performance gap of Big Data tools and HPC systems. To

our knowledge, we are the first to run high-performance

Hadoop for machine learning applications on KNL many-

core clusters.

Here, we propose a hybrid machine learning framework

named Harp-DAAL (Figure 1), which interfaces Harp 1, a

highly efficient Hadoop based communication library, and

DAAL 2, a native Data Analytics Acceleration Library from

Intel. Harp is an open source project, which is a plug-in

to the Apache Hadoop framework, developed by Indiana

University.

Harp has two distinctive functions: 1) Collective commu-

nication operations that are highly optimized for big data

problems. 2) Efficient and innovative computation models

for different machine learning problems. The original Harp

project has its codebase written in Java, which is unable to

leverage the capabilities of shared-memory HPC hardware.

The central idea is to replace Java kernels by highly opti-

mized native kernels or math libraries at the node level. We

use Intel’s DAAL as the low-level kernels for Harp on HPC

platforms. DAAL is a library that aims to provide the users

with highly optimized building blocks for data analytics and

machine learning applications. For each of its kernels, DAAL
has three modes: Batch Processing, Online Processing, and

Distributed Processing. The open source code of DAAL only

provides MKL/TBB based kernels for intra-node compu-

tation while leaving the inter-node communication of dis-

tributed processing to the users. This motivates us to design

and build the Harp-DAAL framework and to perform further

optimization as follows: Within intra-node communication

we can co-design and implement kernels that fully exploit

1https://dsc-spidal.github.io/harp/
2https://github.com/01org/daal



the advantages of hardware architectures. Furthermore, for

inter-node, we can minimize the overhead of data conversion

and data transfer to improve the scalability of code. The rest

of the paper is organized as follows: In Section II, we give

an overview of existing hybrid frameworks in the domain

of data analytics and machine learning. In Section III, we

describe our Harp-DAAL interface, the techniques to reduce

data conversion overhead; and three benchmark algorithms.

In Section IV and Section V, we discuss the configuration

of the experimentation and analyze the experimental results.

Finally, we conclude our work in Section VI.

Figure 1. Harp-DAAL within HPC-BigData Stack

II. RELATED WORK

For years, many scientific projects have tried to accelerate

big data processing. Mars [1] combined the MapReduce

framework with graphics processors and achieved 1.5 to

16 times performance improvements on a PC with G80

GPUs compared to a CPU-based counterpart on web data.

MLlib [2] is a machine learning library built upon Apache

Spark, which includes a variety of machine learning applica-

tions implemented using the Scala programming language.

Although it is easy to use, the performance is not satis-

fying, especially on HPC clusters. Awan et al. [3] have

characterized the performance of Spark MLlib on a 24-

core processor, and they concluded that Spark MLlib suffers

from imbalanced workload on threads and poor usage of

the memory system. Therefore, another approach is to build

machine learning libraries in C/C++, which are well suited

for the HPC clusters. Such efforts include Petuum, devel-

oped to run machine learning algorithms efficiently on any

hardware [4]. However, the C/C++ based solution demands

relatively high programming skills, and in particular, the

knowledge of multi-thread programming and architecture

characteristics of multi-core/many-core processors. Other

machine learning libraries build frameworks in a hybrid

mode. In such libraries, users only need to know about high-

level programming interfaces while letting the framework

invoke proper HPC kernels written in C/C++ or FORTRAN.

Currently Spark MLlib can utilize the highly optimized HPC

library like BLAS and LAPACK interfaced by Breeze and

netlib-java. Torch 3 is a scientific computing framework

with broad support for machine learning algorithms from

Facebook, which uses a script language called LuaJIT at

the high level and the C/CUDA implementations on GPUs

at the low level. Tensorflow 4 is a deep learning framework

developed by Google, which has a Python interface to write

dataflow graphs, and low-level implementations on different

hardware devices like CPUs and GPUs.

III. DESIGN AND IMPLEMENTATION

A. Data Conversion within Harp-DAAL

Harp-DAAL has a two-level structure. At the top level,

it runs a group of Harp mappers, which extend Hadoop’s

Java mapper. Unlike traditional MapReduce mapper, a Harp

mapper holds data in main memory and invokes collective

communication operations among different mappers.

At the bottom level, Harp-DAAL invokes native kernels

written in C/C++, which use multi-threading programming

paradigms such as OpenMP, TBB, and so forth. Since there

are many highly optimized native kernels developed by the

HPC community over the years, the invocation of HPC

kernels can leverage the hardware resources better than the

bottom level implementation of the original Harp applica-

tions, which, in contrast, use Java threads to execute jobs

in parallel. However, the invocation of DAAL kernels from

Harp is non-trivial work, hence, we must address two critical

tasks. First, the undertaking of data conversion between

Harp and DAAL, and second, the computation model of

each application at both inter-node and intra-node levels.

Data conversion between Harp and DAAL is critical to

applications like MF-SGD, where a massive model needs to

be synchronized in each iteration. For a case like this one, an

inappropriate data conversion will significantly slow down

the performance. Before discussing the data conversion, we

first introduce the data structures of the Harp library and

Intel’s DAAL framework.

1) Data Structures of Harp and Intel’s DAAL: Harp has

a three-level hierarchy of data structures. The top level has

the Table class, and a Table contains a certain number of

Partitions. Each Partition consists of a partition id and a

data container. Data containers could wrap up Java objects

or primitive arrays, where the data is stored on heap memory

managed by JVM. This design has two consequences. First,

the data stored within a Table is scattered into different

partitions, whose memory addresses are not contiguous,

3http://torch.ch
4https://www.tensorflow.org
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while many native kernels with optimized memory access

require contiguous memory allocation. Second, the memory

addresses on the Java heap cannot be directly passed to

native kernels because the JVM may change the objects’

physical addresses during Garbage Collection.

On the contrary, the DAAL library consists of two mod-

ules.

• Native Kernels, which includes the implementation of

algorithms and data structures in C/C++

• Interface, the API written in Java and Python to access

Native Kernels
The native kernels are in charge of the computational work

while the Java/Python APIs allow users to construct their

applications without knowing the low-level implementations.

In Harp-DAAL, data conversion happens between the Harp

Java codes and the DAAL Java/Python APIs. Thus, the

dataflow of the Harp-DAAL framework is from the Harp

Java code to the DAAL Java APIs, and finally, to the DAAL

native kernels. For instance, the HomogenNumericTable pro-

vides users two ways to store data.

• ArrayImplm stores the data at Java heap side

• ByteBufferImplm stores the data on the native side using

DirectByteBuffer to read and write data between Java

and native side.

Within the ArrayImplm storage, DAAL Java APIs hold data

in the Java heap space, and it creates a data structure

called JavaNumericTable for the native kernels to access

such data. Whenever a native kernel requests the data in

JavaNumericTable, it will callback to a member function of

HomogenNumericTable at the Java side to trigger the data

transfer via JNI functions and the DirectByteBuffer class.

Most of the DAAL’s data structures support this way of

storing data. However, within the ByteBufferImplm storage,

the Java APIs allocate an empty array in the native memory

space, which makes it the user’s responsibility to read and

write the data between Java heap memory and allocated

native memory. In the current DAAL release version as of

2017, only HomogenNumericTable supports this data storage

method. Native kernels can only manipulate data that is

stored in the native memory space, using an auxiliary data

structure named MicroTable to retrieve specific rows or

columns from a NumericTable.

We design two data conversion operations in Harp-DAAL.

The first operation named JavaBulkCopy starts from the

Harp side and copies data from a Harp Table to a Ho-
mogenNumericTable via the ByteBufferImplm. The second

operation named NativeDiscreteCopy starts from a native

kernel and transfers data from the DAAL Java APIs to native

kernels via the ArrayImplm. Figure 2 (a) and (b) explains

the work-flow of the two data conversion operations.

2) JavaBulkCopy: There are two steps in JavaBulkCopy
• Create a large DirectByteBuffer, and copy data from a

Harp Table into the DirectByteBuffer

• Write the content of DirectByteBuffer into a Homogen-
NumericTable.

First, we use the java.lang.Thread class to do a parallel

data copy from JVM heap memory of a Harp Table to a

memory block within DirectByteBuffer. Second, a member

function named releaseBlockOfRows from HomogenNumer-
icTable does a bulk data copy from DirectByteBuffer to

the native memory allocated in a HomogenNumericTable.

The advantage of JavaBulkCopy is that the data within Ho-
mogenNumericTable is contiguous, which favors many of the

DAAL algorithms such as K-means, and usually results in

more efficient cache usage. However, the downsdies are two-

fold. First, the maximal size of a single DirectByteBuffer is

limited to 2 GB. Second, the scheduling of Java threads is

not as efficient as the scheduling of OpenMP and TBB.

3) NativeDiscreteCopy: In NativeDiscreteCopy, the data

is stored in Java heap memory and DAAL uses a C++

class named JavaNumericTable to expose the data to native

kernels. In NativeDiscreteCopy, a thread from a native kernel

will be attached to a C++ pointer, which is a member of

JavaNumericTable and points to a JVM object via JNI. The

thread then calls Java functions of NumericTable to copy

data from Java heap memory back to native memory by

using DirectByteBuffer. Since the JVM pointer allows con-

current access from different threads, we can use OpenMP

or TBB threads to copy data in parallel as shown in Figure 2

(b). The advantage of using NativeDiscreteCopy is to reduce

the size of DirectByteBuffer, because each thread can reuse

the assigned buffer to copy different data. The downside is

the exposure of the JNI interface and low-level implementa-

tions to users. Deciding which memory copy operation to use

depends on the data structures and model synchronization

operations.

B. Benchmark Algorithms

We select three typical learning algorithms to evalu-

ate our framework: 1) K-means Clustering (K-means), a

computation-bounded algorithm; 2) Matrix Factorization by

Stochastic Gradient Descent (MF-SGD), a computation-

bounded and communication-bounded algorithm; 3) Al-

ternating least squares (ALS), a communication-bounded

algorithm.

1) K-means Clustering: K-means is a widely used clus-

tering algorithm in the machine learning community. It com-

putes the distance between each training point to every cen-

troid, re-assigns the training point to the new cluster and re-

computes the new centroid of each cluster at each iteration.

Harp-DAAL-Kmeans is built upon Harp’s original K-means

parallel implementation, with a computation complexity for

each iteration of O(|Ω|KM), where Ω is the set of training

samples, K is the feature dimension of a training point, and

M is the number of centroids. Harp-DAAL-Kmeans uses the

regroup-allgather operation [5] to synchronize the model, i.e.

centroids, among each mapper. Harp-DAAL-Kmeans uses
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DAALs K-means kernel, where the computation of point-

centroid distance is implemented by BLAS-level 3 matrix-

matrix operations. This optimization significantly increases

the computation intensity, resulting in highly vectorized

codes against the original Harp-Kmeans.

2) MF-SGD: Matrix Factorization based on Stochastic

Gradient Descent (MF-SGD) is commonly used in recom-

mender systems [6], where it aims to factorize a sparse

matrix into two dense model matrices W and H . The com-

putation complexity for each iteration is O(|Ω|K), where

Ω is the set of training samples, and K is the feature

dimension of a training point. Previous work such as [7]

concentrates on the single-node shared memory optimization

for MF-SGD. For distributed memory system, we have

already implemented a pure Java version within the Harp

framework [5], and we re-implement it by invoking native

kernels in our hybrid Harp-DAAL framework.

The implementation of MF-SGD consists of two levels.

At the inter-node level, we use a rotation operation to

synchronize the model distributed among the nodes [8]. At

the intra-node level, we choose an asynchronous operation

to update the model manipulated by different threads. By

eliminating the lock and wait problems at the thread level,

we are able to relieve the load balancing problems caused

by uneven distribution of training points in each row and

column.

3) ALS: Alternating least squares (ALS) is another popu-

lar algorithm to decompose rating matrices in recommender

systems. The algorithm has a computation complexity for

each iteration of O(|Ω|K2+(m+n)K3). Here Ω is the set

of training samples, K is the feature dimension, m is the row

number of the rating matrix, and n is the column number

of the rating matrix. Unlike MF-SGD, ALS alternatively

computes models W and H independently of each other.

The implementation of ALS in our Harp-DAAL framework

chooses the regroup-allgather operation to interface the

DAAL-ALS kernels based on the work of Zou et al. [9]

IV. EXPERIMENTATION

In the experiments, we compared the performance of the

following six implementations:

• Harp-DAAL-Kmeans

• Spark-Kmeans

• Harp-DAAL-SGD

• NOMAD-SGD

• Harp-DAAL-ALS

• Spark-ALS

In addition to the three applications from Harp-DAAL, we

chose three other applications to compare with in the test.

Spark-Kmeans and Spark-ALS are pure Java applications

from Apache Spark (Section II). NOMAD-SGD is a dis-

tributed MF-SGD application developed by Yun et al. [10]

in C/C++ and MPI.

A. Hardware Platform

We conducted experiments on a cluster of Intel’s Xeon Phi

processor 7250 codenamed Knights Landing (KNL). Table I

gives the specification of one KNL node. Compared to Intel’s

Xeon processor family, KNL has three advantages: 1) A high

number of physical cores, 2) Up to 136 AVX-512 Vector
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Table I
SPECIFICATION OF XEON PHI 7250 KNL

Cores Memory Node Specs Misc Specs

Cores 68 DDR4 190 GB Network Omni-path Instruction Set 64 bit

Base Freq 1.4GHz MCDRAM 16 GB Peak Port Band 100 Gbps IS Extension AVX512

L1 Cache 2 MB DDR4-Band 90 Gbps Socket 1 Max Threads 271

L2 Cache 34 MB MCDRAM-Band 400 Gbps Disk 1 TB VPUs 136

Table II
DATASETS USED IN K-MEANS, MF-SGD, AND ALS

Dataset Kmeans-Single Kmeans-Multi Movielens Netflix Yahoomusic Enwiki Hugewiki

#Training 5 million 20 million 9 million 99 million 252 million 609 million 3 billion

#Test none none 698 thousand 1 million 4 million 12 million 365 million

#centroid 10 thousand 100 thousand none none none none none

Dim 100 100 40 40 100 100 1000

λ none none 0.05 0.05 1 0.01 0.01

γ none none 0.003 0.002 0.0001 0.001 0.004

Processing Units (VPU). Each VPU could simultaneously

compute 8 double or 16 float operations in parallel by

enabling Intel’s AVX-512 instruction set extension. 3) On-

chip high bandwidth memory named MCDRAM, whose

bandwidth reaches 400 Gbps. Therefore, KNL favors ap-

plications that maximally leverage the intra-node threads

parallelism, codes vectorization, and memory bandwidth

usage. To compare the utilization of KNL’s features, we

employ Intel VTune Amplifier to do the micro-benchmark

profiling.

B. Dataset

A variety of datasets are used to examine the performance

of implementations. Table II describes the details including

sizes and parameters. For K-means, we have used synthetic

datasets, a small one for single node tests and a large one

for multi-node scaling tests. For MF-SGD and ALS, we used

the same datasets as in related work.

V. RESULTS AND ANALYSIS

A. Single Node Performance

We first evaluated the performance of Harp-DAAL frame-

work on a single KNL node. We used 64 cores out of the

total 68 cores because the self-booted KNL node requires

several cores to run the OS system. Each physical core

runs one thread, which implies a total of 64 threads for

the applications. The metric includes the execution time

per training iteration for K-means, MF-SGD, and ALS

respectively. The time is averaged over a certain number

of iterations to avoid potential cold start anomalies.

In Figure 3, we find that Harp-DAAL achieves the best

performance among the three frameworks. For K-means and

ALS, it runs 20x to 50x faster than Spark. This result

is not surprising because both K-means and ALS contain

matrix-matrix computations that benefit from the optimized

MKL native kernels invoked by Harp-DAAL. For MF-SGD,

we still achieve comparable performance to NOMAD on

datasets Movielens, Netflix, and Enwiki. On Yahoomusic,

we even have a 2x speedup, which exemplifies the intra-

node optimization brought by DAAL kernels.

B. Multi-node Performance

To compare multi-node performance, we used 60 instead

of 64 threads per node in computation and reserved the rest

of the threads to communication tasks that are overlapped in

a pipeline design of applications like MF-SGD. The scalabil-

ity for K-means and MF-SGD is not measured against one

node because the datasets are too large to fit into the memory

of single node. Instead, we assume that the scalability

from one node to 10 nodes are linear, and we measure

the strong scalability over 10 nodes. Figure 4 decomposes

the execution time of Harp-DAAL applications on multiple

nodes into three components: 1) Computation time on local

nodes, 2) Data conversion time on local nodes, and 3) Data

communication time among remote nodes. For K-means, the

computation time is dominant, taking more than 80% of

the total execution time. When it scales from 10 nodes to

20 nodes, the communication ratio decreases because the

model volume on each node decreases, and Harp regroup-

allgather operations favor small communication data. The

communication ratio slightly increases from 20 nodes to 30

nodes, which is due to the insufficient computation work on

each node that causes a reduced computation ratio.

In Figure 5 (a), Harp-DAAL-Kmeans runs 15x to 40x

faster than Spark Kmeans, and shows better scalability from

10 nodes to 20. Beyond 20 nodes, due to low computation

workload on local nodes, the scalability of Harp-DAAL-

Kmeans drops while Spark-Kmeans still has substantial

computation workload. It suggests that Spark-Kmeans is

more computation-bounded than Harp-DAAL-Kmeans be-
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cause strong scalability reflects how an implementation is

bounded by local computations. Since Harp-DAAL-Kmeans

invokes fast MKL kernels at the low level, it is much less

bounded by computation time.

For MF-SGD, Figure 5 (b) shows that Harp-DAAL-SGD

runs 2.5x faster than NOMAD-SGD, and it even achieves

super-linear scalability on 20 nodes and 30 nodes, which

is also better than the scalability of NOMAD-SGD. There

are two reasons why Harp-DAAL-SGD has a super-linear

speedup: First, Harp-DAAL-SGD has its native kernels

implemented by OpenMP, and a small number of training

data may significantly reduce the scheduling overheads.

Second, the native kernel for intra-node computation uses

asynchronous shared-memory data access operations, which

favors sparse training points that has less conflicts in access-

ing the same data.

For ALS, Figure 4 shows that the communication time

already takes up more than 50% of the execution time

on four nodes. This means that ALS is not bounded by

local computation, and therefore both Harp-DAAL-ALS and

Spark-ALS have poor strong scalability in Figure 5 (c).

However, Harp-DAAL-ALS still has around 25x to 40x

speedup when compared to Spark-ALS because it invokes

highly efficient MKL kernels.

C. Micro-Benchmark
1) Performance Breakdown on a KNL Single Node:

The execution time breakdown of all benchmarks in both

frameworks is shown in Figure 7. Compared to another C++

based SGD implementation (Nomad-SGD), our SGD with

Harp-DAAL significantly reduces execution time. This is

because Harp-DAAL-SGD is able to fully take advantage

of AVX-512 to reduce the retiring instruction number by

packaging multiple floating point operations into one SIMD

instruction. One AVX-512 instruction may cause multiple

simultaneous L1 cache accesses, so that Harp-DAAL-SGD

also improves the L1 cache bandwidth utilization. Compared

to Harp-DAAL, our C++ and Java hybrid framework, the

pure Java framework, Spark, inflates the executed instruc-

tion number by at least 10 times on K-means and ALS.

Therefore, the retiring of benchmarks with Harp-DAAL

only takes at most 10% of that with Spark. Spark is

only developed upon the Java virtual machine which can

barely benefit from AVX-512. Therefore, its non-vectorized

code only generates memory requests with poor temporal

locality, hardly saturating the large bandwidth supplied by

the MCDRAM. The serialized memory accesses of Spark

framework substantially prolong the time stall along the

memory hierarchy.
2) Thread Scaling: Figure 6 shows the performance of K-

means, MF-SGD and ALS with varying numbers of threads

on one single node. We noticed that by increasing the num-

ber of threads, the total computing power of KNL increases.
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Figure 5. Strong Scaling on multiple KNL nodes. The bars refer to the execution time of each application. Dashed line is the linear speedup of multiple
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Figure 6. Strong Scaling on Threads of a single KNL (a) K-means dataset: 5 million points, 10 thousand centroids, 100 feature dimension; (b) MF-SGD
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However, communication between cores intensify and cache

capacity per thread also drops significantly. Therefore, more

threads do not necessarily indicate shorter execution time

on a KNL node. K-means, MF-SGD, and ALS encapsulated
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Figure 8. Relative Performance by enabling AVX-512 and MCDRAM.
The baseline performance is the configuration without AVX-512 and
MCDRAM, which is set to 1. The relative performance of other configu-
rations is their acceleration of execution time compared with the baseline
performance

by Harp-DAAL achieve the best performance with 64, 128,

and 64 threads respectively. Since Spark cannot fully utilize

AVX-512, both K-means and ALS with Spark have to exe-
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cute more instructions to do the same job. Both prefer 256-

thread configuration to relieve their bottleneck on instruction

retiring.

3) AVX-512 and MCDRAM: Figure 8 exhibits the perfor-

mance improvement achieved by AVX-512 and MCDRAM

in our Harp-DAAL framework. Instead of configuring MC-

DRAM as a hardware managed cache, we have deployed

it as a parallel component to DDR4 in the main memory

system. Through the numactl command, we can use either

DDR4-based main memory or MCDRAM-based main mem-

ory. All bars are normalized to the scheme compiled with

disabling vectorization and with DDR4-based main memory.

By enabling AVX-512, Kmeans and ALS do not reduce

execution time significantly. This is because, although we

compiled them without vectorization, kernels in Kmeans and

ALS invoke functions from Intel Math Kernel Library which

are fully optimized with AVX-512. AVX-512 improves the

performance of SGD by 70%, since VPUs on KNL com-

pute matrix multiplications with much higher throughput.

Also, only enabling MCDRAM does not obviously boost

the performance of all three benchmarks. K-means, non-

vectorized SGD and ALS have relatively high L2 cache

hit rate; therefore, they cannot benefit from large memory

bandwidth provided by MCDRAM. By enabling both AVX-

512 and MCDRAM, SGD improves the performance by

101%, since AVX-512 instructions may generate multiple

memory accesses in one cycle and the MCDRAM memory

bandwidth can be fully utilized.

VI. CONCLUSION

We designed and implemented Harp-DAAL that enables

Hadoop on cloud servers with manycore KNL processors.

Many machine learning applications can be implemented

with MapReduce-like interfaces with significantly boosted

performance caused by scaling up. Through evaluating

computation and communication-bounded applications, we

show that Harp-DAAL combines advanced communication

operations from Harp and high performance computation

kernels from DAAL. Our framework achieves 15x to 40x

speedups over Spark-Kmeans and 25x to 40x speedups to

Spark-ALS. Compared to NOMAD-SGD, a state-of-the-

art C/C++ implementation of the MF-SGD application, we

still get a factor of 2.5 improvement in performance. An

interesting future direction will be to compare our current

work with other hardware, including Haswell and GPUs, and

develop high performance machine learning libraries. The

code and documentation of Harp-DAAL framework can be

found at https://dsc-spidal.github.io/harp/.
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