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ABSTRACT

Modern biology is experiencing a rapid increase in data vol-
umes that challenges our analytical skills and existing cy-
berinfrastructure. Exponential expansion of the Protein Se-
quence Universe (PSU), the protein sequence space, together
with the costs and complexities of manual curation creates
a major bottleneck in life sciences research. Existing re-
sources lack scalable visualization tools that are instrumen-
tal for functional annotation. Here, we describe a multi-
dimensional scaling (MDS) implementation to create a 3D
embedding of the PSU that allows visualizing the relation-
ships between large numbers of proteins. To demonstrate
the method, we use sequence similarity scores as a measure
of proximity. An example of the prokaryotic PSU shows
that the low-dimensional representation preserves important
grouping features such as relative proximity of functionally
similar clusters and clear structural separation between clus-
ters with specific and general functions. The advantages
of the method and its implementation include the ability
to scale to large numbers of sequences, integrate different
similarity measures with other functional and experimental
data, and facilitate protein annotation. Transdisciplinary
approaches akin to the one described in this paper are ur-
gently needed to quickly and efficiently translate the influx
of new data into tangible innovations and groundbreaking
discoveries.
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1. INTRODUCTION
Functional annotation of newly sequenced genomes and

meta-genomes is one of the principal challenges of modern
biology. Rapidly advancing sequencing technologies gener-
ate peta- and even exabyte scale data, exponentially expand-
ing the PSU (see Table 1) [57, 60, 14]. Assigning functions
to this glut of newly sequenced proteins is an immense com-
putational challenge that requires advanced analytical tools
and scaling capabilities [64, 67, 56, 52, 51, 44, 41, 59, 39, 29,
43].

Protein functional annotation relies on expert knowledge
along with sophisticated statistical and machine-learning meth-
ods including pairwise and multiple sequence alignment al-
gorithms [1, 2, 18, 72], structure prediction models [61, 16],
motif and domain finding algorithms [65, 4, 19, 53],and clus-
tering methods [70, 31, 34, 73, 46]. Existing information on
proteins and their functions is scattered across numerous
databases including general resources [5, 7], pathways [32,
71, 11, 54], protein structure [8], protein domains [19, 53],
protein families [35, 31, 47, 73, 46, 70] and protein expres-
sions [38].

In life sciences, efficient data exploration and analysis de-
pends upon interactive visualization tools. However, mod-
ern resources lack adequate tools to coherently display the
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Table 1: Definitions of keywords and abbreviations used in this paper.
Abbreviation/Keyword Definition

ActiveMQ Apache publish-subscribe environment; http://activemq.apache.org/.
Apache Hadoop A software framework that supports data-intensive distributed applications and provides

a distributed file system that stores data on the compute nodes, allowing for high aggregate
bandwidth across the cluster; http://hadoop.apache.org/.

Apache Hive

An open source software designed to run data warehouse-styled operations against large
datasets stored in Hadoop Distributed File System. Hive allows projecting an RDBMS-like
structure onto the stored data and run queries against those structures using HiveQL
language; http://hive.apache.org/.

Azure, Microsoft Windows

Provides on-demand compute and storage to host, scale, and manage applications on the internet
through Microsoft datacenters. The NCBI BLAST on Windows Azure is a cloud-based
implementation of the NCBI BLAST tool;
http://research.microsoft.com/en-us/projects/azure/azureblast.aspx.

BLAST

A heuristic algorithm which is optimized to identify local alignments with high sequence
similarity. After optimal alignments are determined, BLAST calculates a bit score and an e-value
for each alignment where the latter considers both the bit score and additional information about
search database size and the scoring system http://blast.ncbi.nlm.nih.gov/Blast.cgi [1, 2].

COG
Clusters of Orthologous Groups of proteins database developed by NCBI. The database
is separated into COGs for prokaryotic genomes and KOGs for eukaryotic genomes;
http://www.ncbi.nlm.nih.gov/COG/ [69, 70].

DELSA Global
Data-Enabled Life Sciences Alliance International whose mission is to accelerate the impact of
data-enabled life sciences research on solutions to the pressing needs of our global society;
http://delsaglobal.org/.

EM
Expectation Maximization is an iterative algorithm used to find maximum likelihood
estimators of the underlying distribution for incomplete data or data with missing values.

KOG Clusters of orthologous groups for eukaryotic genomes; http://www.ncbi.nlm.nih.gov/COG/ [70].

MapReduce
A computational paradigm, where the application is divided into many small fragments
of work, each of which may be executed on any node in the compute cluster.

MDS
Multidimensional scaling finds a low-dimensional Euclidean representation of data given
the matrix of pairwise similarities. The classical MDS estimates the projections so that
the relation between the resulting interpoint distances and the original similarities is linear.

MPI
The Message Passing Interface designed for high performance on massively parallel machines
and on workstation clusters; http://www.mcs.anl.gov/research/projects/mpi/.

NW
Needleman-Wunsh dynamic programming algorithm is used to find the highest-scoring global
alignment of two sequences.

PlotViz
A visualization software developed by SALSA group at Indiana University;
http://salsahpc.indiana.edu/plotviz/ [62].

PSU

Protein Sequence Universe is the totality, or the aggregate, of all the protein sequences that
exists in nature. PSU is also an interactive visualization framework with scalable software
architecture. When developed the framework will allow users to explore, browse, analyze,
and visualize protein data; http://manxcatcogblog.blogspot.com/.

Sammon’s loss A cost function for nonlinear MDS with an emphasis on preserving small distances [63].

Sequence similarity
A score that gives the degree of matching between the two compared sequences. The examples
include BLAST, NW and Smith-Waterman scores.

Twister
An open source implementation of Iterative MapReduce that supports more efficient and
broader range of communication collectives (including reduce, gather, and broadcast in
an MPI language) in the Reduce phase of MapReduce; http://www.iterativemapreduce.org/.

UniProt
The Universal Protein Resource for protein sequence and annotation data;
http://www.uniprot.org/.

UniRef

The UniProt Reference Clusters database that groups members based on sequence similarity.
UniRef is composed of the distinct databases UniRef100, UniRef90, and UniRef50, that have
100%, 90%, and 50% sequence similarity, respectively, within protein clusters and reduce the
UniProt database size by approximately 10%, 40%, and 70%, respectively. Each cluster
contains one reference sequence and all proteins within the similarity threshold to the reference.
UniRef retains annotation from all members of the protein cluster to prevent information loss;
http://www.ebi.ac.uk/uniref/.
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vast amount of information across large sets of proteins. The
data are typically analyzed on the experiment level and in
the context of known relationships, e.g. pathways, com-
plexes. Tools for pathway and network visualization (e.g.
Ingenuity or Biobase) consider neither sequence information
nor extend to the entire PSU.
Functional annotation and analysis is typically done on

a gene-by-gene (protein-by-protein) basis. While the ‘man-
ual’ approach is feasible for a small group of proteins, it
quickly becomes unsustainable as the volume of sequences
expands [22, 6]. Furthermore, in functional and compara-
tive genomics approximately 30% of proteins in any newly
sequenced genome have unknown function [10, 41, 39, 40,
23, 44]. This barrier remains relatively constant as more
new organisms are sequenced. Combining this problem with
the influx of data from novel sequencing technologies creates
an ever expanding backlog of un-annotated proteins, or so
called “hypothetical” proteins [10, 45, 41, 39, 23]. In ad-
dition, there is a growing number of databases that are no
longer supported or updated including some of the most
popular protein family resources like the Clusters of Orthol-
ogous Groups database (COG; see Table 1, [70]), SYSTERS
[46], and CluStr[47].

The size and complexity of data from high-throughput
technologies requires the methods to cohesively integrate in-
formation on protein expression, pathways, structure and
functional annotation across different experiments, organ-
isms and conditions, and to put these data into context with
sequence information [38]. Comprehensive functional anno-
tation of large scale data and the ability to generate new re-
search directions fully depend on the wide range of skills and
tools including expert knowledge, manual curation, compute
power, analytic methods with scaling capabilities, and new
transdisciplinary collaboration models between computer-
and life scientists.

To demonstrate the complexities of protein annotation, we
completed the first of a kind all-versus-all sequence align-
ment for 9.9 million proteins in the UniRef100 database
(Table 1, [68]) [44]. The alignment was done on the Mi-
crosoft Windows Azure cloud system (Table 1, [17]) with
475 eight-core virtual machines that produced over 3 bil-
lion filtered records in six days. Using the normalized align-
ment score, we have assigned 68% of 5.1 million bacterial
proteins into clusters from the COG database [44]. The re-
maining proteins were classified into functional groups using
an innovative implementation of a single-linkage algorithm
on a Hadoop compute cluster using Hive and the MapRe-
duce paradigm (Table 1). This implementation significantly
reduced the run time for non-indexed queries and optimized
clustering performance [44]. Consequently, nearly 2 million
proteins were agglomerated into half a million functional
groups. Similarly, the eukaryotic database was expanded by
over 1 million proteins with unclustered proteins classified
into 100,000 new functional groups [44].

The UniRef100 clustering project showcased both the promise
and the challenges of protein annotation. In particular, it
has demonstrated that, in view of the exponential growth
of data, a clustering approach is computationally advanta-
geous because it can facilitate the annotation of large num-
bers of proteins [70, 31, 34, 73, 46, 44]. However, the project
took the considerable efforts of a diverse group of researchers
along with multiple cloud systems to successfully complete
the task. Publicly available cluster resources are struggling

to cope with the influx of data and, as a result, are either no
longer supported [70, 47, 46] or provide limited interactive
and analytic capabilities [31, 35]. These problems highlight
the pressing need in the biological community for a scalable
and efficient computational approach to visualize, explore
and assign functional annotations to new proteins.
Functional annotation of protein sequences, especially on

the scale of the entire PSU, is one of the unsurmounted hur-
dles toward comprehensive understanding of life and medical
cure. An accurate, sustainable, large-scale method for func-
tional annotation demands focused and concentrated efforts
of experts from multiple scientific fields. Given the scale of
data and the range of skills required to translate it to knowl-
edge to action, scientists forge alliances to leverage resources
and expertise across different disciplines [55]. This drive for
collective innovation in data-enabled sciences translates into
community efforts such as DELSA Global, the Data-Enabled
Life Sciences Alliance International (see Table 1) [55, 37,
44, 43, 42]. The goal of the newly founded transdisciplinary
alliance is to create a synergy between the computer sci-
ence and life-sciences to tackle modern biological challenges
through best computational practices and advanced cyber-
infrastructure.
In this paper, we propose a visualization tool to explore

the structure of the protein space and relationships between
the proteins. The visualization is based on the MDS ap-
proach (Table 1) that uses a parallel implementation on a
multigrid platform with Iterative MapReduce, the standard
Message Passing Interface (MPI; see Table 1), and thread-
ing. The MDS approach is a form of low-dimensional embed-
ding, similar to principal component analysis, independent
component analysis, principal coordinate analysis, spring
embedding, feature selection and others [24, 30, 27]. While
low-dimensional representation of data has been widely used
by scientists, existing methods neither address large-scale
biological problems nor do they offer sustainable, affordable
means to cope with the influx of new information. The pro-
posed PSU tool provides interactive, exploratory means to
examine complex biological data both independently and in
the context of the existing information. The low-dimensional
representation allows visualizing the vastness of the PSU, its
structure and complexity on a variety of scales and in dif-
ferent domains.
To demonstrate the performance of the method, we apply

it to the COG data creating a 3D projection of the prokary-
otic PSU. Prokaryotes are one of the four major biologi-
cal kingdoms. Despite lack of support, the COG database
remains one of the most popular scientific resources (over
6K citations according to Google Scholar). The resulting
PSU can be further integrated with functional, experimen-
tal, structural, environmental and other data. Most im-
portantly, the implementation allows for new experimental
data to be mapped into the existing universe using inter-
polation. Interpolation allows for efficient expansion of the
PSU, a feature that is essential for large-scale data. For ex-
ample, the prokaryotic PSU can be efficiently updated and
expanded as the new data come in. The exa-scale of data
in the PSU requires cutting-edge technologies, advanced cy-
berinfrastructure, transdisciplinary collaboration and a wide
range of skills and expertise. This work represents an exam-
ple of the potential impact DELSA Global could have to
solve large-scale biological problems.
In what follows, we describe the MDS method and use
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100,000 sequences to create the 3D rendering of the prokary-
otic PSU. We briefly describe the data, outline the imple-
mentation and discuss the results. We then elaborate on
the application and merits of the proposed approach to the
functional annotation of new protein data.

2. MATERIALS AND METHODS

2.1 COG Database
A major principle of molecular evolution is that function-

ally important proteins tend to be conserved across species.
The COG database was developed by the National Cen-
ter for Biotechnology Information (NCBI) [70]. The project
constructed clusters of proteins from 66 prokaryotic and
seven eukaryotic genomes. For each protein, the best aligned
protein in every other genome was determined using a se-
quence similarity search [1]. If three proteins from three or-
ganisms were mutual best hits, they created a triple. COGs
are the result of exhaustive, successive merging of triples
with two common members. Manual curation of the clus-
ters was done by experts to ensure correct grouping and
functional annotations. The COG database is separated
into COGs for prokaryotic genomes and KOGs for eukaryotic
genomes (see Table 1) [69, 70]. According to Google scholar,
COG project is one of the most popular protein resources
with approximately 4.5K citations. However, the database
was last updated in 2008 and is not currently maintained.
In this paper, we are using the COG database of prokary-

otic genomes that we will refer to as COGs. We have selected
a sample of 100,000 proteins from well-characterized COG
clusters.

2.2 UniRef Databases
UniRef is composed of three databases UniRef100, UniRef90,

and UniRef50, which have 100%, 90%, and 50% sequence
similarity (see Table 1), respectively, within protein clusters
and reduce the UniProt database size by approximately 10%,
40%, and 70%, respectively. Each cluster contains one refer-
ence sequence and all proteins within the similarity thresh-
old to the reference. UniRef retains annotation from all
members of the protein cluster to prevent information loss
[5, 68].

2.3 Multi-Dimensional Scaling
The MDS algorithm was used to project the protein se-

quence similarity data into a low-dimensional space [13, 48].
The method has an O(n2) computational complexity to map
n sequences into 3D. It can be heuristically solved in several
ways including the expectation maximization (EM) [9, 49,
12] and Newton’s method (see Table 1) [33]. Here, we used
Sammon’s loss function [63] (see Table 1) given by

H =

n∑

i,j=1

i<j

(f(δij)− d(xi, xj))
2

f(δij)
, (1)

where δij is the dissimilarity measure between sequences i

and j and d is the Euclidean distance between the corre-
sponding 3D projections xi and xj . Function f in equation
(1) is a monotone transformation of dissimilarity measure.
The denominator term in (1) ensures a larger contribution
from smaller dissimilarities thus making the clustering struc-
ture of the data more apparent. We used a highly robust

implementation of the nonlinear minimization with Leven-
berg - Marquardt algorithm to regularize Newton’s equa-
tions [50].

The transformation f is chosen heuristically to increase
the ratio of standard deviation to mean for f(δij) and to
increase the range of dissimilarity measures. For example, if
f is an identity, the high dimensional data will essentially be
projected onto the surface of a 3D structure, which lowers
the utility of the mapping.

2.4 Implementation
We used a scaling, parallel traditional MPI with thread-

ing intranode for MDS implementation [20]. In the Reduce
phase of MapReduce, we used Twister (see Table 1) [72, 74,
15]. In Twister, all communication avoids using intermedi-
ate disk and is built around ActiveMQ (see Table 1) in Java
Twister and around Azure primitives in the Microsoft cloud.

The method was applied to obtain a 3D projection of
100,000 sequences from well-characterized COGs in prokary-
otic PSU. Here, we chose sequence alignment scores as a
proximity measure. Pairwise distances were calculated using
an MPI implementation of the Needleman-Wunsch (NW, see
Table 1) alignment algorithm. The NW algorithm was real-
ized by a parallel computation on the 24-core node system.
The efficiency of the parallel distance computation was less
than that of MDS due to saturation of memory bandwidth.

Further, we applied a monotone square-root transforma-
tion to the pairwise NW distances. To map the data into a
3D Euclidean space, we fed the transformed distances into
an MPI implementation of the nonlinear MDS [36]. The
resulting 3D projections were visualized in PlotViz (see Ta-
ble 1) [62]. The calculations were performed on a 768 core
Microsoft HPC cluster.
The NW distance calculation required one day to com-

plete and the MDS job ran for three days. The parallel
efficiency of the code was approximately 70% based on ear-
lier studies that discuss both the inter-node and intra-node
cases and find that it is essential to adopt a hybrid model
with intra-node threading and MPI between nodes [20, 58,
21]. The transformation was chosen heuristically to reduce
the formal dimension of distance data (in this case, from
244 with original δij to 14 for f(δij) after mapping), which
allows for a more uniform coverage of the target Euclidean
space by the MDS projections.
The COG data was downloaded from the NCBI site. All

software used to analyze and visualize the data is an open
source. The results of the MDS analysis including esti-
mated coordinates, parameters and captures are availalbe
at http://manxcatcogblog.blogspot.com/.

3. RESULTS
Figure 1 shows the 3D rendering of the prokaryotic PSU.

Each point represents a particular sequence. The axis ori-
entation is shown in the left bottom corner. The figure
shows the complexity of the PSU and the presence of distinct
grouping structure. We color-coded eleven COG clusters in
Figure 1 so one could appreciate the diversity of the under-
lying protein groups with respect to their location, shape,
dispersion and size. While some clusters are rather tight,
others are scattered throughout a sizeable domain. For ex-
ample, compare the tight COG0333 cluster of ribosomal pro-
tein L32 with the diffuse COG0454 (HPA2) and COG0477
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Figure 1: MDS representation of the 100,000 sequences from well-characterized COGs in prokaryotic PSU.
Each point represents a protein sequence. Eleven COG clusters were color-coded as marked in the legend.
The number of proteins in each cluster is given in parentheses.

Figure 2: (left) The heatmap of the transformed NW distances versus the Euclidean distances between the
MDS projections and (right) the histogram of transformed NW distances for all 100,000 COG proteins.
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Table 2: Annotations for COG clusters shown in Figures 1 and 4.
COG Annotation Size UniRef

COG1131 ABC-type multidrug TS, ATPase comp. 244 14,406
COG1136 ABC-type antimicrobial peptide TS, ATPase comp. 198 7,306
COG1126 ABC-type polar amino acid TS, ATPase comp. 118 4,061
COG3839 ABC-type sugar TSs, ATPase comp. 142 4,121
COG0444 ABC-type di-/oligopeptide/nickel TS, ATPase comp. 142 3,520
COG4608 ABC-type oligopeptide TS, ATPase comp. 132 3,074
COG3842 ABC-type spermidine/putrescine TSs, ATPase comp. 115 3,665

COG0333 Ribosomal protein L32 49 1,148
COG0454 Histone acetyltransferase HPA2 & related acetyltransf. 285 14,085
COG0477 Permeases of the major facilitator superfamily 381 48,590
COG1028 Dehydrogenases with different specificities 299 37,461
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Figure 3: The dendrogram tree of the cluster cen-
troids. The cluster labels are color-coded as in Fig-
ure 1.

(Permeases of the major facilitator superfamily); see also
Table 2.

Recall that in MDS, the goal is to create a low-dimensional
representation of a high-dimensional space while preserving
the similarity measures. Hence, given the choice of the sim-
ilarity measure, the proximity of two points in the 3D rep-
resentation in Figures 1 and 4 implies the similarity of the
corresponding protein sequences as measured by the NW
scores. High intensity values along the diagonal in Figure 2
(left) show a strong correlation between the NW distances
and the distances based on MDS projections. The excess of
points with mapped distances less than original values can
be traced to equation (1) where the denominator depends
on the original rather than mapped distances. Consequently,
clusters that appear tight in 3D can be thought of as consist-
ing of similar sequences, in NW sense. Similarly, scattered
clusters imply greater variability of NW alignments between
the proteins in the same cluster. Spatial proximity of clus-
ters indicates the similarity of the sequences across these
clusters. Note that the histogram of NW distances in Fig-

ure 2 also shows a lack of spatial separation between the
clusters.

For the eleven color-coded COG clusters in Figure 1, we
computed the centroids of their respective MDS projections.
The dendrogram tree in Figure 3 shows the relative proxim-
ity of the cluster centroids to each other. Out of the eleven
selected clusters, COG1131 (yellow) and COG1136 (cyan)
are the tightest with respect to the mean intra-cluster dis-
tance. These two clusters are a part of a group that includes
seven COGs in all; see right branch of the dendrogram. The
other four COGs 1028, 0333, 0477, 0454 appear to be less
similar to this group of seven or to each other.
The magnified view in Figure 4 details the neighborhood

structure of the COG1131 and COG1136 showing five more
COGs lying in close proximity. Remarkably, all seven clus-
ters are functionally similar and correspond to the ABC-
type transport system, ATPase component (see Table 2).
The heatmap shows a good agreement between the NW dis-
tances and MDS projections for the seven selected clusters;
see Figure 5.
From the biological standpoint, the spatial features of the

MDS projection of sequence alignment scores conform well
to the clusters’ functions. For example, a tight COG3839
cluster contains 142 protein sequences of the sugar transport
systems that are similar both in function and composition.
Similarly, COG1126 of the polar amino acid transport sys-
tem proteins with very specific functions appears as a very
tight cluster. In turn, the apparent diffusivity of COG1131
can be explained by the fact that 244 multidrug transport
system proteins that compose the cluster differ in amino acid
composition and functional mechanisms. The inter-cluster
distance of the 3D projections reflects the similarity between
protein sequences in the corresponding clusters. For exam-
ple, the two oligopeptide transport systems, COG4608 and
COG0444, have similar shape and are located in close prox-
imity to one another. The example of the COG data clearly
demonstrates that MDS can effectively create a 3D projec-
tion of the PSU while preserving the fundamental grouping
structure.

As mentioned, in our previous work we used all-versus-
all alignment of 10 million UniRef100 proteins to populate
the existing COG clusters [44]. The last column in Table 2
shows the number of UniRef100 proteins added to each of
the eleven clusters from Figure 1. Notably the most diffuse
clusters show the greatest expansion.
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4. DISCUSSION
Functional protein annotation is one of the most impor-

tant and resource-intensive challenges in biology [6]. The
rapid influx of data from newly sequenced genomes together
with the limited number of annotation experts creates a
major bottleneck, stalling scientific advances. The number
of sequenced genomes is poised to increase in the next five
years. The Earth Microbiome Project alone is expected to
sequence 500,000 microbial genomes, which will contain on
the order of 1.5 billion protein sequences and half a trillion
amino acids [14]. This is well over a 100-fold increase in
the number of sequenced microbial genomes and proteins
currently contained in GenBank. The i5K Insect and other
Arthropod Genome Sequencing Initiative plans to sequence
the genomes of 5,000 insects and related species over the
next five years, yielding nearly 100 million new protein se-
quences [60]. Assigning functions to this glut of newly se-
quenced proteins is an immense scientific challenge.

Large-scale annotation projects require expert knowledge,
manual curation, significant compute power, a wide spec-
trum of analytic tools with scaling capabilities, and new
collaboration models between computer scientists and bi-
ologists. Low-dimensional representation of data and inter-
active visualization tools would substantially aid functional
annotation efforts, allow generating new hypotheses and pro-
vide new research directions.
The exploratory MDS tool allows interactive visualization

of dependencies between a large number of proteins. Cur-
rently existing methods address large-scale biological prob-
lems or offer sustainable, affordable means to cope with the
influx of new information. A low-dimensional MDS pro-
jection of biological data allows dynamic, interactive explo-
ration that is a mandatory precursor to statistical model-
ing. The projection provides a unique perspective on the
structure of data and can be integrated with information on
function, pathways, structure, and environment, enabling
analysis across domains of interest. The MDS approach
can be readily adapted to incorporate a composite simi-
larity measure based on different types of proximities and
biological information [1, 66, 25]. The parallel MDS im-
plementation used here was developed to handle large-scale
data.Furthermore, the newly developed MDS interpolation
methods allow for quick mapping of sequences into the exist-
ing projection space. The interpolation runs in O(n) time
after an initial MDS embedding with the O(n2) approach
[3]. Given the ever increasing volumes of data from new
sequencing technologies, this feature is essential as it facili-
tates prompt integration of large scale data while avoiding
significant computational costs. In the future, we intend to
explore the merits of our new MDS inmplementation that
incorporates deterministic annealing into the EM approach.
The deterministic annealing helps achieve significantly bet-
ter results with little increase in execution time [36].

The challenges associated with the functional annotation
of newly sequenced genomes cannot be solved by the life sci-
ences community alone. A successful and sustainable solu-
tion requires a new, trans-disciplinary approach that would
leverage and adopt the most prominent advances of modern
sciences. This turn to collective innovation in data-enabled
sciences is essential for truly ground-breaking medical dis-
coveries and advances in public health. Scientific alliances
like DELSA Global stand to harness the essential diversity
of skills and expertise, thus quickly and efficiently trans-

lating the influx of new data into tangible innovations and
groundbreaking discoveries [55, 37, 43, 42].
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